
Scilab Interface
Release 5.4.1

Yann Colette, Yves Renard, Julien Pommier, Konstantinos Poulios

Jul 22, 2021

Contents

1 Introduction 1

2 Installation 3

3 GetFEM organization 5
3.1 Functions . 5
3.2 Objects . 7

4 Draw Command reference 9
4.1 gf_colormap . 9
4.2 gf_plot . 9
4.3 gf_plot_1D . 10
4.4 gf_plot_mesh . 11
4.5 gf_plot_slice . 11

5 Command reference 15
5.1 gf_asm . 16
5.2 gf_compute . 23
5.3 gf_cont_struct . 27
5.4 gf_cont_struct_get . 28
5.5 gf_cvstruct_get . 30
5.6 gf_delete . 31
5.7 gf_eltm . 32
5.8 gf_fem . 33
5.9 gf_fem_get . 35
5.10 gf_geotrans . 37
5.11 gf_geotrans_get . 37
5.12 gf_global_function . 38
5.13 gf_global_function_get . 39
5.14 gf_integ . 40
5.15 gf_integ_get . 41
5.16 gf_levelset . 42
5.17 gf_levelset_get . 43
5.18 gf_levelset_set . 44
5.19 gf_linsolve . 44
5.20 gf_mesh . 45

i

5.21 gf_mesh_get . 48
5.22 gf_mesh_set . 55
5.23 gf_mesh_fem . 58
5.24 gf_mesh_fem_get . 60
5.25 gf_mesh_fem_set . 66
5.26 gf_mesh_im . 67
5.27 gf_mesh_im_get . 69
5.28 gf_mesh_im_set . 70
5.29 gf_mesh_im_data . 71
5.30 gf_mesh_im_data_get . 71
5.31 gf_mesh_im_data_set . 72
5.32 gf_mesh_levelset . 72
5.33 gf_mesh_levelset_get . 73
5.34 gf_mesh_levelset_set . 74
5.35 gf_mesher_object . 74
5.36 gf_mesher_object_get . 76
5.37 gf_model . 76
5.38 gf_model_get . 76
5.39 gf_model_set . 85
5.40 gf_poly . 122
5.41 gf_precond . 123
5.42 gf_precond_get . 124
5.43 gf_slice . 125
5.44 gf_slice_get . 127
5.45 gf_slice_set . 130
5.46 gf_spmat . 131
5.47 gf_spmat_get . 132
5.48 gf_spmat_set . 134
5.49 gf_util . 135
5.50 gf_workspace . 136

Index 139

ii

CHAPTER 1

Introduction

This guide provides a reference about the SciLab interface of GetFEM. For a complete reference of
GetFEM, please report to the specific guides, but you should be able to use the scilab interface without
any particular knowledge of the GetFEM internals, although a basic knowledge about Finite Elements
is required. This documentation is however not self contained. You should in particular refer to the user
documentation to have a more extensive description of the structures algorithms and concepts used.

This documentation is still under construction. It is still close to copy of the Matlab interface documen-
tation.

Copyright © 2004-2020 GetFEM project.

The text of the GetFEM website and the documentations are available for modification and reuse under
the terms of the GNU Free Documentation License

GetFEM is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version along with the GCC Runtime Library Exception either version
3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC
Runtime Library Exception for more details. You should have received a copy of the GNU Lesser
General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

1

http://getfem.org/index.html
http://getfem.org/userdoc/index.html
http://getfem.org/userdoc/index.html
http://www.gnu.org/licenses/fdl.html

Scilab Interface, Release 5.4.1

2 Chapter 1. Introduction

CHAPTER 2

Installation

The installation of the SciLab GetFEM toolbox can be somewhat tricky, since it combines a C++ com-
piler, libraries and SciLab interaction. In case of troubles with a non-GNU compiler, gcc/g++ (>= 4.8)
should be a safe solution. The minimal SciLab release is the 5.2.2.

See the download and install page for the installation of GetFEM on different plateforms.

3

../download.html

Scilab Interface, Release 5.4.1

4 Chapter 2. Installation

CHAPTER 3

GetFEM organization

This part of the SciLab GetFEM documentation is to be adapted (comes frome the | MatLab GetFEM
one).

The GetFEM toolbox is just a convenient interface to the GetFEM library: you must have a working
GetFEM installed on your computer. All the functions of GetFEM are prefixed by gf_ (hence typing
gf_ at the SciLab prompt and then pressing the <tab> key is a quick way to obtain the list of getfem
functions).

3.1 Functions

• gf_workspace : workspace management.

• gf_util : miscellanous utility functions.

• gf_delete : destroy a GetFEM object (gfMesh , gfMeshFem , gfMeshIm etc.).

• gf_cvstruct_get : retrieve informations from a gfCvStruct object.

• gf_geotrans : define a geometric transformation.

• gf_geotrans_get : retrieve informations from a gfGeoTrans object.

• gf_mesh : creates a new gfMesh object.

• gf_mesh_get : retrieve informations from a gfMesh object.

• gf_mesh_set : modify a gfMesh object.

• gf_eltm : define an elementary matrix.

• gf_fem : define a gfFem.

• gf_fem_get : retrieve informations from a gfFem object.

• gf_integ : define a integration method.

• gf_integ_get : retrieve informations from an gfInteg object.

5

Scilab Interface, Release 5.4.1

• gf_mesh_fem : creates a new gfMeshFem object.

• gf_mesh_fem_get : retrieve informations from a gfMeshFem object.

• gf_mesh_fem_set : modify a gfMeshFem object.

• gf_mesh_im : creates a new gfMeshIm object.

• gf_mesh_im_get : retrieve informations from a gfMeshIm object.

• gf_mesh_im_set : modify a gfMeshIm object.

• gf_slice : create a new gfSlice object.

• gf_slice_get : retrieve informations from a gfSlice object.

• gf_slice_set : modify a gfSlice object.

• gf_spmat : create a gfSpMat object.

• gf_spmat_get : perform computations with the gfSpMat.

• gf_spmat_set : modify the gfSpMat.

• gf_precond : create a gfPrecond object.

• gf_precond_get : perform computations with the gfPrecond.

• gf_linsolve : interface to various linear solvers provided by getfem (SuperLU, conjugated
gradient, etc.).

• gf_asm : assembly routines.

• gf_solve : various solvers for usual PDEs (obsoleted by the gfMdBrick objects).

• gf_compute : computations involving the solution of a PDE (norm, derivative, etc.).

• gf_mdbrick : create a (“model brick”) gfMdBrick object.

• gf_mdbrick_get : retrieve information from a gfMdBrick object.

• gf_mdbrick_set : modify a gfMdBrick object.

• gf_mdstate : create a (“model state”) gfMdState object.

• gf_mdstate_get : retrieve information from a gfMdState object.

• gf_mdstate_set : modify a gfMdState object.

• gf_model : create a gfModel object.

• gf_model_get : retrieve information from a gfModel object.

• gf_model_set : modify a gfModel object.

• gf_global_function : create a gfGlobalFunction object.

• gf_model_get : retrieve information from a gfGlobalFunction object.

• gf_model_set : modify a GlobalFunction object.

• gf_plot_mesh : plotting of mesh.

• gf_plot : plotting of 2D and 3D fields.

• gf_plot_1D : plotting of 1D fields.

• gf_plot_slice : plotting of a mesh slice.

6 Chapter 3. GetFEM organization

Scilab Interface, Release 5.4.1

3.2 Objects

Various “objects” can be manipulated by the GetFEM toolbox, see fig. GetFEM objects hierarchy.. The
MESH and MESHFEM objects are the two most important objects.

Fig. 1: GetFEM objects hierarchy.

• gfGeoTrans: geometric transformations (defines the shape/position of the convexes), created
with gf_geotrans

• gfGlobalFunction: represent a global function for the enrichment of finite element methods.

• gfMesh : mesh structure (nodes, convexes, geometric transformations for each convex), created
with gf_mesh

• gfInteg : integration method (exact, quadrature formula. . .). Although not linked directly to
GEOTRANS, an integration method is usually specific to a given convex structure. Created with
gf_integ

• gfFem : the finite element method (one per convex, can be PK, QK, HERMITE, etc.). Created
with gf_fem

• gfCvStruct : stores formal information convex structures (nb. of points, nb. of faces which
are themselves convex structures).

3.2. Objects 7

Scilab Interface, Release 5.4.1

• gfMeshFem : object linked to a mesh, where each convex has been assigned an FEM. Created
with gf_mesh_fem.

• gfMeshImM : object linked to a mesh, where each convex has been assigned an integration
method. Created with gf_mesh_im.

• gfMeshSlice : object linked to a mesh, very similar to a P1-discontinuous gfMeshFem. Used
for fast interpolation and plotting.

• gfMdBrick : gfMdBrick , an abstraction of a part of solver (for example, the part which build
the tangent matrix, the part which handles the dirichlet conditions, etc.). These objects are stacked
to build a complete solver for a wide variety of problems. They typically use a number of gfMesh-
Fem, gfMeshIm etc. Deprecated object, replaced now by gfModel.

• gfMdState : “model state”, holds the global data for a stack of mdbricks (global tangent matrix,
right hand side etc.). Deprecated object, replaced now by gfModel.

• gfModel : “model”, holds the global data, variables and description of a model. Evolution of
“model state” object for 4.0 version of GetFEM.

The GetFEM toolbox uses its own memory management. Hence GetFEM objects are not cleared
when a:

>> clear all

is issued at the SciLab prompt, but instead the function:

>> gf_workspace('clear all')

should be used. The various GetFEM object can be accessed via handles (or descriptors), which are just
SciLab structures containing 32-bits integer identifiers to the real objects. Hence the SciLab command:

>> whos

does not report the memory consumption of GetFEM objects (except the marginal space used by the
handle). Instead, you should use:

>> gf_workspace('stats')

There are two kinds of GetFEM objects:

• static ones, which can not be deleted: ELTM, FEM, INTEG, GEOTRANS and CVSTRUCT.
Hopefully their memory consumption is very low.

• dynamic ones, which can be destroyed, and are handled by the gf_workspace function:
MESH, MESHFEM, MESHIM, SLICE, SPMAT, PRECOND.

The objects MESH and MESHFEM are not independent: a MESHFEM object is always linked to a
MESH object, and a MESH object can be used by several MESHFEM objects. Hence when you request
the destruction of a MESH object, its destruction might be delayed until it is not used anymore by
any MESHFEM (these objects waiting for deletion are listed in the anonymous workspace section of
gf_workspace('stats')).

8 Chapter 3. GetFEM organization

CHAPTER 4

Draw Command reference

4.1 gf_colormap

Synopsis

c=gf_colormap(name)

Description :

return a colormap, or change the current colormap. name can be: ‘tripod’, ‘chouette’,
‘froid’, ‘tank’ or ‘earth’.

4.2 gf_plot

Synopsis

[hsurf, hcontour, hquiver, hmesh, hdefmesh]=gf_plot(mesh_fem mf, U, ...)

The options are specified as pairs of "option name"/"option value"

'zplot',{'off'|'on'} : values of ``U`` are mapped on the z-axis
→˓(only possible when qdim=1, mdim=2).
'norm', {'off'|'on'} : if qdim >= 2, color-plot the norm of the field
'dir',[] : or the scalar product of the field with 'dir
→˓' (can be a vector, or 'x', 'y' etc..)
'refine',8 : nb of refinments for curved edges and
→˓surface plots
'interpolated',{'off'|'on'}: if triangular patch are interpolated
'pcolor',{'on'|'off'} : if the field is scalar, a color plot of its
→˓values is plotted
'quiver',{'on'|'off'} : if the field is vector, represent arrows
'quiver_density',50 : density of arrows in quiver plot
'quiver_scale',1 : scaling of arrows (0=>no scaling)

(continues on next page)

9

Scilab Interface, Release 5.4.1

(continued from previous page)

'mesh',{'off'|'on'} : show the mesh ?
'meshopts',{cell(0)} : cell array of options passed to gf_plot_
→˓slice for the mesh
'deformed_mesh', {'off'|'on'} : shows the deformed mesh (only when qdim ==
→˓mdim)
'deformed_meshopts', {cell(0)}: cell array of options passed to gf_plot_
→˓slice for the deformed mesh
'deformation',[] : plots on the deformed object (only when qdim
→˓== mdim)
'deformation_mf',[] : plots on the deformed object (only when qdim
→˓== mdim)
'deformation_scale','10%' : indicate the amplitude of the deformation.
→˓Can be a percentage of the mesh width if given as a string, or an
→˓absolute value if given as a number
'cvlst',[] : list of convexes to plot (empty=>all
→˓convexes)
'title',[] : set the title
'contour',[] : list of contour values
'disp_options', {'off'|'on'} : shows the option or not.

Description :

The function expects U to be a row vector. If U is a scalar field, then gf_plot(mf,U)
will fill the mesh with colors representing the values of U. If U is a vector field, then the
default behavior of gf_plot is to draw vectors representing the values of U.

On output, this function returns the handles to the various graphical objects created: hmesh
is the handles to the mesh lines, hbound is the handles to the edges of the boundaries,
hfill is the handle of the patch objects of faces, hvert (resp hconv, hdof) is the
handles of the vertices (resp. convexes, dof) labels.

For example, plotting a scalar field on the border of a 3D mesh can be done with

% load the 'strange.mesh_fem' (found in the getfem_matlab/tests
→˓directory)
mf=gf_mesh_fem('load', 'strange.mesh_fem')
U=rand(1, gf_mesh_fem_get(mf, 'nbdof')); # random field that will
→˓be drawn
gf_plot(mf, U, 'refine', 25, 'cvlst', gf_mesh_get(mf,'outer faces
→˓'), 'mesh','on');

4.3 gf_plot_1D

Synopsis

gf_plot_1D(mesh_fem mf, U, ...)

Available options are specified as pairs of "option name"/"option value"

'style', 'bo-' : line style and dof marker style (same syntax as in
→˓the Scilab command 'plot');
'color', '' : override line color (by a given color name);
'dof_color', '' : override color of dof markers;
'width', 2 : line width.

10 Chapter 4. Draw Command reference

Scilab Interface, Release 5.4.1

Description :

This function plots a 1D finite element field.

4.4 gf_plot_mesh

Synopsis

gf_plot_mesh(m, ...)

'vertices', {'off'|'on'} : displays also vertices numbers.
'convexes', {'off'|'on'} : displays also convexes numbers.
'dof',{'off'|'on'} : displays also finite element nodes. In that
→˓case, ``m`` should be a ``mesh_fem`` identifier.
'regions',BLST : displays the boundaries listed in BLST.
'cvlst',CVLST : display only the listed convexes. If CVLST
→˓has two rows, display only the faces listed in the second row.
'edges', {'on' | 'off'} : display edges ?
'faces', {'off'|'on'} : fills each 2D-face of the mesh
'curved', {'off'|'on'} : displays curved edges
'refine',N : refine curved edges and filled faces N times
'deformation', Udef : optionnal deformation applied to the mesh (M
→˓must be a mesh_fem object)
'edges_color',[.6 .6 1] : RGB values for the color of edges
'edges_width',1 : width of edges
'faces_color',[.75 .75 .75]): RGB values for the color of faces
'quality',{ 'off' | 'on' } : Display the quality of the mesh.

Description :

This function is used to display a mesh.

Example

% the mesh is in the tests directory of the distribution
m=gf_mesh('import','gid','donut_with_quadratic_tetra_314_elements.
→˓msh');
gf_plot_mesh(m,'refine',15,'cvlst',gf_mesh_get(m,'outer faces'),
→˓'faces','on',\ldots, 'faces_color',[1. .9 .2],'curved','on',
→˓'edges_width',2);
camlight % turn on the light!

4.5 gf_plot_slice

Synopsis

gf_plot_slice(sl, ...)

The options are specified as pairs of "option name"/"option value"

data [] : data to be plotted (one value per slice node)
convex_data [] : data to be plotted (one value per mesh convex)

(continues on next page)

4.4. gf_plot_mesh 11

Scilab Interface, Release 5.4.1

(continued from previous page)

mesh, ['auto'] : 'on' -> show the mesh (faces of edges), 'off' ->
→˓ignore mesh
mesh_edges, ['on'] : show mesh edges ?
mesh_edges_color, [0.60 0.60 1] : color of mesh edges
mesh_edges_width, [0.70] : width of mesh edges
mesh_slice_edges, ['on'] : show edges of the slice ?
mesh_slice_edges_color, [0.70 0 0] : color of slice edges
mesh_slice_edges_width, [0.50] : width of slice edges
mesh_faces, ['off'] : 'on' -> fill mesh faces (otherwise they are
→˓transparent)
mesh_faces_color, [0.75 0.75 0.75]
pcolor, ['on'] : if the field is scalar, a color plot of its values
→˓is plotted
quiver, ['on'] : if the field is vector, represent arrows
quiver_density, 50 : density of arrows in quiver plot
quiver_scale, 1 : density of arrows in quiver plot
tube, ['on'] : use tube plot for 'filar' (1D) parts of the slice
tube_color, ['red'] : color of tubes (ignored if 'data' is not empty and
→˓'pcolor' is on)
tube_radius, ['0.5%'] : tube radius; you can use a constant, or a
→˓percentage (of the mesh size) or a vector of nodal values
showoptions, ['on'] : display the list of options

the 'data' and 'convex_data' are mutually exclusive.

Description :

This function can be used to plot mesh slices. It is also used by the gf_plot_mesh and
gf_plot functions.

Example : consider that you have a 3D mesh_fem mf and a vector field U de-
fined on this mesh_fem, solution of the Stokes problem in a tank (see the demo
demo_stokes_3D_tank_draw.m in the tests directory).

figure;
% slice the mesh with two half spaces, and take the boundary of
→˓the resulting quarter-cylinder
sl=gf_slice(\{'boundary',\{'intersection',\{'planar',+1,[0;0;0],
→˓[0;1;0]\},\ldots

\{'planar',+1,[0;0;0],
→˓[1;0;0]\}\}\},m,6);
Usl=gf_compute(pde.mf_u,U,'interpolate on', sl); % interpolate
→˓the solution on the slice
% show the norm of the displacement on this slice
gf_plot_slice(sl,'mesh','on','data',sqrt(sum(Usl.^2,1)),'mesh_
→˓slice_edges','off');

% another slice: now we take the lower part of the mesh
sl=gf_slice(\{'boundary',\{'intersection',\{'planar',+1,[0;0;6],
→˓[0;0;-1]\},\ldots

\{'planar',+1,[0;0;0],[0;
→˓1;0]\}\}\},m,6);
Usl=gf_compute(pde.mf_u,U,'interpolate on', sl);
hold on;
gf_plot_slice(sl,'mesh','on','data',sqrt(sum(Usl.^2,1)),'mesh_
→˓slice_edges','off');

(continues on next page)

12 Chapter 4. Draw Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

% this slice contains the transparent mesh faces displayed on the
→˓picture
sl2=gf_slice(\{'boundary',\{'planar',+1,[0;0;0],[0;1;0]\}\},\ldots

m,6,setdiff(all_faces',TOPfaces','rows')');
gf_plot_slice(sl2,'mesh_faces','off','mesh','on','pcolor','off');

% last step is to plot the streamlines
hh=[1 5 9 12.5 16 19.5]; % vertical position of the different
→˓starting points of the streamlines
H=[zeros(2,numel(hh));hh];

% compute the streamlines
tsl=gf_slice('streamlines',pde.mf_u,U,H);
Utsl=gf_compute(pde.mf_u,U,'interpolate on', tsl);

% render them with "tube plot"
[a,h]=gf_plot_slice(tsl,'mesh','off','tube_radius',.2,'tube_color
→˓','white');
hold off;
% use a nice colormap
caxis([0 .7]);
c=[0 0 1; 0 .5 1; 0 1 .5; 0 1 0; .5 1 0; 1 .5 0; 1 .4 0; 1 0 0; 1
→˓.2 0; 1 .4 0; 1 .6 0; 1 .8 0];
colormap(c);

4.5. gf_plot_slice 13

Scilab Interface, Release 5.4.1

14 Chapter 4. Draw Command reference

CHAPTER 5

Command reference

Please remember that this documentation is not self contained. You should in particular refer to the user
documentation to have a more extensive description of the structures algorithms and concepts used.

The expected type of each function argument is indicated in this reference. Here is a list of these types:

int integer value
hobj a handle for any GetFEM object
scalar scalar value
string string
ivec vector of integer values
vec vector
imat matrix of integer values
mat matrix
spmat sparse matrix (both matlab native sparse matrices, and GetFEM sparse matrices)
precond GetFEM preconditioner object
mesh mesh object descriptor (or gfMesh object)
mesh_fem mesh fem object descriptor (or gfMeshFem object)
mesh_im mesh im object descriptor (or gfMeshIm object)
mesh_im_data mesh im data object descriptor (or gfMeshImData object)
mesh_slice mesh slice object descriptor (or gfSlice object)
cvstruct convex structure descriptor (or gfCvStruct object)
geotrans geometric transformation descriptor (or gfGeoTrans object)
fem fem descriptor (or gfFem object)
eltm elementary matrix descriptor (or gfEltm object)
integ integration method descriptor (or gfInteg object)
model model descriptor (or gfModel object)
global_function global function descriptor
mesher_object mesher object descriptor
cont_struct continuation-structure descriptor

Arguments listed between square brackets are optional. Lists between braces indicate that the argument

15

http://getfem.org/userdoc/index.html
http://getfem.org/userdoc/index.html

Scilab Interface, Release 5.4.1

must match one of the elements of the list. For example:

>> [X,Y]=dummy(int i, 'foo' | 'bar' [,vec v])

means that the dummy function takes two or three arguments, its first being an integer value, the second
a string which is either ‘foo’ or ‘bar’, and a third optional argument. It returns two values (with the usual
matlab meaning, i.e. the caller can always choose to ignore them).

5.1 gf_asm

Synopsis

{...} = gf_asm('generic', mesh_im mim, int order, string expression, int
→˓region, [model model, ['Secondary_domain', 'name',]] [string varname,
→˓int is_variable[, {mesh_fem mf, mesh_imd mimd}], value], ['select_output
→˓', 'varname1'[, 'varname2]], ...)
M = gf_asm('mass matrix', mesh_im mim, mesh_fem mf1[, mesh_fem mf2[, int
→˓region]])
L = gf_asm('laplacian', mesh_im mim, mesh_fem mf_u, mesh_fem mf_d, vec a[,
→˓int region])
Le = gf_asm('linear elasticity', mesh_im mim, mesh_fem mf_u, mesh_fem mf_d,
→˓ vec lambda_d, vec mu_d[, int region])
TRHS = gf_asm('nonlinear elasticity', mesh_im mim, mesh_fem mf_u, vec U,
→˓string law, mesh_fem mf_d, mat params, {'tangent matrix'|'rhs'|
→˓'incompressible tangent matrix', mesh_fem mf_p, vec P|'incompressible rhs
→˓', mesh_fem mf_p, vec P})
A = gf_asm('helmholtz', mesh_im mim, mesh_fem mf_u, mesh_fem mf_d, vec k[,
→˓int region])
A = gf_asm('bilaplacian', mesh_im mim, mesh_fem mf_u, mesh_fem mf_d, vec
→˓a[, int region])
A = gf_asm('bilaplacian KL', mesh_im mim, mesh_fem mf_u, mesh_fem mf_d,
→˓vec a, vec nu[, int region])
V = gf_asm('volumic source', mesh_im mim, mesh_fem mf_u, mesh_fem mf_d,
→˓vec fd[, int region])
B = gf_asm('boundary source', int bnum, mesh_im mim, mesh_fem mf_u, mesh_
→˓fem mf_d, vec G)
{HH, RR} = gf_asm('dirichlet', int bnum, mesh_im mim, mesh_fem mf_u, mesh_
→˓fem mf_d, mat H, vec R [, scalar threshold])
Q = gf_asm('boundary qu term',int boundary_num, mesh_im mim, mesh_fem mf_u,
→˓ mesh_fem mf_d, mat q)
gf_asm('define function', string name, int nb_args, string expression[,
→˓string expression_derivative_t[, string expression_derivative_u]])
gf_asm('undefine function', string name)
gf_asm('define linear hardening function', string name, scalar sigma_y0,
→˓scalar H, ... [string 'Frobenius'])
gf_asm('define Ramberg Osgood hardening function', string name, scalar
→˓sigma_ref, {scalar eps_ref | scalar E, scalar alpha}, scalar n[, string
→˓'Frobenius'])
gf_asm('expression analysis', string expression [, {mesh mesh | mesh_im
→˓mim}] [, der_order] [, model model] [, string varname, int is_variable[,
→˓{mesh_fem mf | mesh_imd mimd}], ...])
{...} = gf_asm('volumic' [,CVLST], expr [, mesh_ims, mesh_fems, data...])
{...} = gf_asm('boundary', int bnum, string expr [, mesh_im mim, mesh_fem
→˓mf, data...])
Mi = gf_asm('interpolation matrix', mesh_fem mf, {mesh_fem mfi | vec pts})

(continues on next page)

16 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

Me = gf_asm('extrapolation matrix',mesh_fem mf, {mesh_fem mfe | vec pts})
B = gf_asm('integral contact Uzawa projection', int bnum, mesh_im mim,
→˓mesh_fem mf_u, vec U, mesh_fem mf_lambda, vec vec_lambda, mesh_fem mf_
→˓obstacle, vec obstacle, scalar r [, {scalar coeff | mesh_fem mf_coeff,
→˓vec coeff} [, int option[, scalar alpha, vec W]]])
B = gf_asm('level set normal source term', int bnum, mesh_im mim, mesh_fem
→˓mf_u, mesh_fem mf_lambda, vec vec_lambda, mesh_fem mf_levelset, vec
→˓levelset)
M = gf_asm('lsneuman matrix', mesh_im mim, mesh_fem mf1, mesh_fem mf2,
→˓levelset ls[, int region])
M = gf_asm('nlsgrad matrix', mesh_im mim, mesh_fem mf1, mesh_fem mf2,
→˓levelset ls[, int region])
M = gf_asm('stabilization patch matrix', @tm mesh, mesh_fem mf, mesh_im
→˓mim, real ratio, real h)

Description :

General assembly function.

Many of the functions below use more than one mesh_fem: the main mesh_fem (mf_u) used
for the main unknown, and data mesh_fem (mf_d) used for the data. It is always assumed
that the Qdim of mf_d is equal to 1: if mf_d is used to describe vector or tensor data, you
just have to “stack” (in fortran ordering) as many scalar fields as necessary.

Command list :

{...} = gf_asm('generic', mesh_im mim, int order, string
expression, int region, [model model, ['Secondary_domain',
'name',]] [string varname, int is_variable[, {mesh_fem mf,
mesh_imd mimd}], value], ['select_output', 'varname1'[,
'varname2]], ...)

High-level generic assembly procedure for volumic or boundary assembly.

Performs the generic assembly of <literal>expression</literal> with the in-
tegration method <literal>mim</literal> on the mesh region of index <lit-
eral>region</literal> (-1 means all elements of the mesh). The same mesh
should be shared by the integration method and all the finite element methods
or mesh_im_data corresponding to the variables.

<literal>order</literal> indicates either that the (scalar) potential (order = 0) or
the (vector) residual (order = 1) or the tangent (matrix) (order = 2) is to be com-
puted.

<literal>model</literal> is an optional parameter allowing to take into account
all variables and data of a model. Note that all enabled variables of the
model will occupy space in the returned vector/matrix corresponding to their
degrees of freedom in the global system, even if they are not present in <lit-
eral>expression</literal>.

The variables and constants (data) are listed after the region number (or option-
ally the model). For each variable/constant, a name must be given first (as it is
referred in the assembly string), then an integer equal to 1 or 0 is expected re-
spectively for declaring a variable or a constant, then the finite element method
if it is a fem variable/constant or the mesh_im_data if it is data defined on in-
tegration points, and the vector representing the value of the variable/constant.

5.1. gf_asm 17

Scilab Interface, Release 5.4.1

It is possible to give an arbitrary number of variable/constant. The difference
between a variable and a constant is that test functions are only available for
variables, not for constants.

<literal>select_output</literal> is an optional parameter which allows to reduce
the output vector (for <literal>order</literal> equal to 1) or the matrix (for <lit-
eral>order</literal> equal to 2) to the degrees of freedom of the specified vari-
ables. One variable has to be specified for a vector output and two for a matrix
output.

Note that if several variables are given, the assembly of the tangent ma-
trix/residual vector will be done considering the order in the call of the func-
tion (the degrees of freedom of the first variable, then of the second one, and
so on). If a model is provided, all degrees of freedom of the model will
be counted first, even if some of the model variables do not appear in <lit-
eral>expression</literal>.

For example, the L2 norm of a vector field “u” can be computed with:

gf_compute('L2 norm') or with the square root of:

gf_asm('generic', mim, 0, 'u.u', -1, 'u', 1, mf, U);

The nonhomogeneous Laplacian stiffness matrix of a scalar field can be evalu-
ated with:

gf_asm('laplacian', mim, mf, mf_data, A) or equivalently
→˓with:

gf_asm('generic', mim, 2, 'A*Grad_Test2_u.Grad_Test_u', -
→˓1, 'u', 1, mf, U, 'A', 0, mf_data, A);

M = gf_asm('mass matrix', mesh_im mim, mesh_fem mf1[,
mesh_fem mf2[, int region]])

Assembly of a mass matrix.

Return a spmat object.

L = gf_asm('laplacian', mesh_im mim, mesh_fem mf_u, mesh_fem
mf_d, vec a[, int region])

Assembly of the matrix for the Laplacian problem.

<latex style=”text”><![CDATA[nablacdot(a(x)nabla u)]]></latex> with <lit-
eral>a</literal> a scalar.

Return a spmat object.

Le = gf_asm('linear elasticity', mesh_im mim, mesh_fem mf_u,
mesh_fem mf_d, vec lambda_d, vec mu_d[, int region])

Assembles of the matrix for the linear (isotropic) elasticity problem.

<latex style=”text”><![CDATA[nablacdot(C(x):nabla u)]]></latex> with <latex
style=”text”><![CDATA[C]]></latex> defined via <literal>lambda_d</literal>
and <literal>mu_d</literal>.

Return a spmat object.

18 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

TRHS = gf_asm('nonlinear elasticity', mesh_im mim, mesh_fem
mf_u, vec U, string law, mesh_fem mf_d, mat params,
{'tangent matrix'|'rhs'|'incompressible tangent matrix',
mesh_fem mf_p, vec P|'incompressible rhs', mesh_fem mf_p,
vec P})

Assembles terms (tangent matrix and right hand side) for nonlinear elasticity.

The solution <literal>U</literal> is required at the current time-step. The <lit-
eral>law</literal> may be choosen among:

• ‘SaintVenant Kirchhoff’: Linearized law, should be avoided. This law has
the two usual Lame coefficients as parameters, called lambda and mu.

• ‘Mooney Rivlin’: This law has three parameters, called C1, C2 and D1. Can
be preceded with the words ‘compressible’ or ‘incompressible’ to force a
specific version. By default, the incompressible version is considered which
requires only the first two material coefficients.

• ‘neo Hookean’: A special case of the ‘Mooney Rivlin’ law that requires one
material coefficient less (C2 = 0). By default, its compressible version is
used.

• ‘Ciarlet Geymonat’: This law has 3 parameters, called lambda, mu and
gamma, with gamma chosen such that gamma is in]-lambda/2-mu, -mu[.

The parameters of the material law are described on the mesh_fem <lit-
eral>mf_d</literal>. The matrix <literal>params</literal> should have <lit-
eral>nbdof(mf_d)</literal> columns, each row correspounds to a parameter.

The last argument selects what is to be built: either the tangent matrix, or the
right hand side. If the incompressibility is considered, it should be followed by
a mesh_fem <literal>mf_p</literal>, for the pression.

Return a spmat object (tangent matrix), vec object (right hand side), tuple of
spmat objects (incompressible tangent matrix), or tuple of vec objects (incom-
pressible right hand side).

A = gf_asm('helmholtz', mesh_im mim, mesh_fem mf_u, mesh_fem
mf_d, vec k[, int region])

Assembly of the matrix for the Helmholtz problem.

<latex style=”text”><![CDATA[Delta u + k^2 u]]></latex> = 0, with <lit-
eral>k</literal> complex scalar.

Return a spmat object.

A = gf_asm('bilaplacian', mesh_im mim, mesh_fem mf_u,
mesh_fem mf_d, vec a[, int region])

Assembly of the matrix for the Bilaplacian problem.

<latex style=”text”><![CDATA[Delta(a(x)Delta u) = 0]]></latex> with <lit-
eral>a</literal> scalar.

Return a spmat object.

A = gf_asm('bilaplacian KL', mesh_im mim, mesh_fem mf_u,
mesh_fem mf_d, vec a, vec nu[, int region])

5.1. gf_asm 19

Scilab Interface, Release 5.4.1

Assembly of the matrix for the Bilaplacian problem with Kirchhoff-Love formu-
lation.

<latex style=”text”><![CDATA[Delta(a(x)Delta u) = 0]]></latex> with <lit-
eral>a</literal> scalar.

Return a spmat object.

V = gf_asm('volumic source', mesh_im mim, mesh_fem mf_u,
mesh_fem mf_d, vec fd[, int region])

Assembly of a volumic source term.

Output a vector <literal>V</literal>, assembled on the mesh_fem <lit-
eral>mf_u</literal>, using the data vector <literal>fd</literal> defined on the
data mesh_fem <literal>mf_d</literal>. <literal>fd</literal> may be real or
complex-valued.

Return a vec object.

B = gf_asm('boundary source', int bnum, mesh_im mim,
mesh_fem mf_u, mesh_fem mf_d, vec G)

Assembly of a boundary source term.

<literal>G</literal> should be a [Qdim x N] matrix, where N is the number of
dof of <literal>mf_d</literal>, and Qdim is the dimension of the unkown u (that
is set when creating the mesh_fem).

Return a vec object.

{HH, RR} = gf_asm('dirichlet', int bnum, mesh_im mim,
mesh_fem mf_u, mesh_fem mf_d, mat H, vec R [, scalar
threshold])

Assembly of Dirichlet conditions of type <literal>h.u = r</literal>.

Handle <literal>h.u = r</literal> where h is a square matrix (of any rank) whose
size is equal to the dimension of the unkown u. This matrix is stored in <lit-
eral>H</literal>, one column per dof in <literal>mf_d</literal>, each column
containing the values of the matrix h stored in fortran order:

< 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 > 𝐻(:, 𝑗) = [ℎ11(𝑥𝑗)ℎ21(𝑥𝑗)ℎ12(𝑥𝑗)ℎ22(𝑥𝑗)] < /𝑙𝑖𝑡𝑒𝑟𝑎𝑙 >

if u is a 2D vector field.

Of course, if the unknown is a scalar field, you just have to set <literal>H =
ones(1, N)</literal>, where N is the number of dof of <literal>mf_d</literal>.

This is basically the same than calling gf_asm(‘boundary qu term’) for <lit-
eral>H</literal> and calling gf_asm(‘neumann’) for <literal>R</literal>, except
that this function tries to produce a ‘better’ (more diagonal) constraints matrix
(when possible).

See also gf_spmat_get(spmat S, ‘Dirichlet_nullspace’).

Q = gf_asm('boundary qu term',int boundary_num, mesh_im mim,
mesh_fem mf_u, mesh_fem mf_d, mat q)

20 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Assembly of a boundary qu term.

<literal>q</literal> should be be a [Qdim x Qdim x N] array, where N is the
number of dof of <literal>mf_d</literal>, and Qdim is the dimension of the un-
kown u (that is set when creating the mesh_fem).

Return a spmat object.

gf_asm('define function', string name, int nb_args, string
expression[, string expression_derivative_t[, string
expression_derivative_u]])

Define a new function <literal>name</literal> which can be used in high level
generic assembly. The function can have one or two parameters. In <lit-
eral>expression</literal> all available predefined function or operation of the
generic assembly can be used. However, no reference to some variables or
data can be specified. The argument of the function is <literal>t</literal> for
a one parameter function and <literal>t</literal> and <literal>u</literal> for a
two parameter function. For instance ‘sin(pi*t)+2*t*t’ is a valid expression
for a one parameter function and ‘sin(max(t,u)*pi)’ is a valid expression for
a two parameters function. <literal>expression_derivative_t</literal> and <lit-
eral>expression_derivative_u</literal> are optional expressions for the deriva-
tives with respect to <literal>t</literal> and <literal>u</literal>. If they are not
furnished, a symbolic derivation is used.

gf_asm('undefine function', string name)

Cancel the definition of a previously defined function <literal>name</literal> for
the high level generic assembly.

gf_asm('define linear hardening function', string name,
scalar sigma_y0, scalar H, ... [string 'Frobenius'])

Define a new linear hardening function under the name <literal>name</literal>,
with initial yield stress <literal>sigma_y0</literal> and hardening modulus H. If
an extra string argument with the value ‘Frobenius’ is provided, the hardening
function is expressed in terms of Frobenius norms of its input strain and output
stress, instead of their Von-Mises equivalents.

gf_asm('define Ramberg Osgood hardening function', string
name, scalar sigma_ref, {scalar eps_ref | scalar E, scalar
alpha}, scalar n[, string 'Frobenius'])

Define a new Ramberg Osgood hardening function under the name <lit-
eral>name</literal>, with initial yield stress <literal>sigma_y0</literal> and
hardening modulus H. If an extra string argument with the value ‘Frobenius’
is provided, the hardening function is expressed in terms of Frobenius norms of
its input strain and output stress, instead of their Von-Mises equivalents.

gf_asm('expression analysis', string expression [, {mesh
mesh | mesh_im mim}] [, der_order] [, model model] [, string
varname, int is_variable[, {mesh_fem mf | mesh_imd mimd}],
...])

Analyse a high-level generic assembly expression and print information about
the provided expression.

5.1. gf_asm 21

Scilab Interface, Release 5.4.1

{...} = gf_asm('volumic' [,CVLST], expr [, mesh_ims,
mesh_fems, data...])

Low-level generic assembly procedure for volumic assembly.

The expression <literal>expr</literal> is evaluated over the mesh_fem’s listed
in the arguments (with optional data) and assigned to the output arguments. For
details about the syntax of assembly expressions, please refer to the getfem user
manual (or look at the file getfem_assembling.h in the GetFEM sources).

For example, the L2 norm of a field can be computed with:

gf_compute('L2 norm') or with the square root of:

gf_asm('volumic','u=data(#1); V()+=u(i).u(j).comp(Base(
→˓#1).Base(#1))(i,j)',mim,mf,U)

The Laplacian stiffness matrix can be evaluated with:

gf_asm('laplacian',mim, mf, mf_data, A) or equivalently
→˓with:

gf_asm('volumic','a=data(#2);M(#1,#1)+=sym(comp(Grad(#1).
→˓Grad(#1).Base(#2))(:,i,:,i,j).a(j))', mim,mf,mf_data,A);

{...} = gf_asm('boundary', int bnum, string expr [, mesh_im
mim, mesh_fem mf, data...])

Low-level generic boundary assembly.

See the help for gf_asm(‘volumic’).

Mi = gf_asm('interpolation matrix', mesh_fem mf, {mesh_fem
mfi | vec pts})

Build the interpolation matrix from a mesh_fem onto another mesh_fem or a set
of points.

Return a matrix <literal>Mi</literal>, such that <literal>V = Mi.U</literal> is
equal to gf_compute(‘interpolate_on’,mfi). Useful for repeated interpolations.
Note that this is just interpolation, no elementary integrations are involved here,
and <literal>mfi</literal> has to be lagrangian. In the more general case, you
would have to do a L2 projection via the mass matrix.

<literal>Mi</literal> is a spmat object.

Me = gf_asm('extrapolation matrix',mesh_fem mf, {mesh_fem
mfe | vec pts})

Build the extrapolation matrix from a mesh_fem onto another mesh_fem or a set
of points.

Return a matrix <literal>Me</literal>, such that <literal>V = Me.U</literal> is
equal to gf_compute(‘extrapolate_on’,mfe). Useful for repeated extrapolations.

<literal>Me</literal> is a spmat object.

B = gf_asm('integral contact Uzawa projection', int bnum,
mesh_im mim, mesh_fem mf_u, vec U, mesh_fem mf_lambda, vec
vec_lambda, mesh_fem mf_obstacle, vec obstacle, scalar r

22 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

[, {scalar coeff | mesh_fem mf_coeff, vec coeff} [, int
option[, scalar alpha, vec W]]])

Specific assembly procedure for the use of an Uzawa algorithm to solve
contact problems. Projects the term $-(lambda - r (u_N-g))_-$ on the finite
element space of $lambda$.

Return a vec object.

B = gf_asm('level set normal source term', int bnum, mesh_im
mim, mesh_fem mf_u, mesh_fem mf_lambda, vec vec_lambda,
mesh_fem mf_levelset, vec levelset)

Performs an assembly of the source term represented by <lit-
eral>vec_lambda</literal> on <literal>mf_lambda</literal> considered to
be a component in the direction of the gradient of a levelset function (normal to
the levelset) of a vector field defined on <literal>mf_u</literal> on the boundary
<literal>bnum</literal>.

Return a vec object.

M = gf_asm('lsneuman matrix', mesh_im mim, mesh_fem mf1,
mesh_fem mf2, levelset ls[, int region])

Assembly of a level set Neuman matrix.

Return a spmat object.

M = gf_asm('nlsgrad matrix', mesh_im mim, mesh_fem mf1,
mesh_fem mf2, levelset ls[, int region])

Assembly of a nlsgrad matrix.

Return a spmat object.

M = gf_asm('stabilization patch matrix', @tm mesh, mesh_fem
mf, mesh_im mim, real ratio, real h)

Assembly of stabilization patch matrix .

Return a spmat object.

5.2 gf_compute

Synopsis

n = gf_compute(mesh_fem MF, vec U, 'L2 norm', mesh_im mim[, mat CVids])
n = gf_compute(mesh_fem MF, vec U, 'L2 dist', mesh_im mim, mesh_fem mf2,
→˓vec U2[, mat CVids])
n = gf_compute(mesh_fem MF, vec U, 'H1 semi norm', mesh_im mim[, mat
→˓CVids])
n = gf_compute(mesh_fem MF, vec U, 'H1 semi dist', mesh_im mim, mesh_fem
→˓mf2, vec U2[, mat CVids])
n = gf_compute(mesh_fem MF, vec U, 'H1 norm', mesh_im mim[, mat CVids])
n = gf_compute(mesh_fem MF, vec U, 'H2 semi norm', mesh_im mim[, mat
→˓CVids])
n = gf_compute(mesh_fem MF, vec U, 'H2 norm', mesh_im mim[, mat CVids])
DU = gf_compute(mesh_fem MF, vec U, 'gradient', mesh_fem mf_du)

(continues on next page)

5.2. gf_compute 23

Scilab Interface, Release 5.4.1

(continued from previous page)

HU = gf_compute(mesh_fem MF, vec U, 'hessian', mesh_fem mf_h)
UP = gf_compute(mesh_fem MF, vec U, 'eval on triangulated surface', int
→˓Nrefine, [vec CVLIST])
Ui = gf_compute(mesh_fem MF, vec U, 'interpolate on', {mesh_fem mfi |
→˓slice sli | vec pts})
Ue = gf_compute(mesh_fem MF, vec U, 'extrapolate on', mesh_fem mfe)
E = gf_compute(mesh_fem MF, vec U, 'error estimate', mesh_im mim)
E = gf_compute(mesh_fem MF, vec U, 'error estimate nitsche', mesh_im mim,
→˓int GAMMAC, int GAMMAN, scalar lambda_, scalar mu_, scalar gamma0,
→˓scalar f_coeff, scalar vertical_force)
gf_compute(mesh_fem MF, vec U, 'convect', mesh_fem mf_v, vec V, scalar dt,
→˓int nt[, string option[, vec per_min, vec per_max]])

Description :

Various computations involving the solution U to a finite element problem.

Command list :

n = gf_compute(mesh_fem MF, vec U, 'L2 norm', mesh_im mim[,
mat CVids])

Compute the L2 norm of the (real or complex) field <literal>U</literal>.

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

n = gf_compute(mesh_fem MF, vec U, 'L2 dist', mesh_im mim,
mesh_fem mf2, vec U2[, mat CVids])

Compute the L2 distance between <literal>U</literal> and <lit-
eral>U2</literal>.

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

n = gf_compute(mesh_fem MF, vec U, 'H1 semi norm', mesh_im
mim[, mat CVids])

Compute the L2 norm of grad(<literal>U</literal>).

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

n = gf_compute(mesh_fem MF, vec U, 'H1 semi dist', mesh_im
mim, mesh_fem mf2, vec U2[, mat CVids])

Compute the semi H1 distance between <literal>U</literal> and <lit-
eral>U2</literal>.

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

n = gf_compute(mesh_fem MF, vec U, 'H1 norm', mesh_im mim[,
mat CVids])

Compute the H1 norm of <literal>U</literal>.

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

24 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

n = gf_compute(mesh_fem MF, vec U, 'H2 semi norm', mesh_im
mim[, mat CVids])

Compute the L2 norm of D^2(<literal>U</literal>).

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

n = gf_compute(mesh_fem MF, vec U, 'H2 norm', mesh_im mim[,
mat CVids])

Compute the H2 norm of <literal>U</literal>.

If <literal>CVids</literal> is given, the norm will be computed only on the listed
elements.

DU = gf_compute(mesh_fem MF, vec U, 'gradient', mesh_fem
mf_du)

Compute the gradient of the field <literal>U</literal> defined on mesh_fem <lit-
eral>mf_du</literal>.

The gradient is interpolated on the mesh_fem <literal>mf_du</literal>, and re-
turned in <literal>DU</literal>. For example, if <literal>U</literal> is de-
fined on a P2 mesh_fem, <literal>DU</literal> should be evaluated on a P1-
discontinuous mesh_fem. <literal>mf</literal> and <literal>mf_du</literal>
should share the same mesh.

<literal>U</literal> may have any number of dimensions (i.e. this function
is not restricted to the gradient of scalar fields, but may also be used for
tensor fields). However the last dimension of <literal>U</literal> has to be
equal to the number of dof of <literal>mf</literal>. For example, if <lit-
eral>U</literal> is a [3x3xNmf] array (where Nmf is the number of dof of
<literal>mf</literal>), <literal>DU</literal> will be a [Nx3x3[xQ]xNmf_du] ar-
ray, where N is the dimension of the mesh, Nmf_du is the number of dof
of <literal>mf_du</literal>, and the optional Q dimension is inserted if <lit-
eral>Qdim_mf != Qdim_mf_du</literal>, where Qdim_mf is the Qdim of <lit-
eral>mf</literal> and Qdim_mf_du is the Qdim of <literal>mf_du</literal>.

HU = gf_compute(mesh_fem MF, vec U, 'hessian', mesh_fem
mf_h)

Compute the hessian of the field <literal>U</literal> defined on mesh_fem <lit-
eral>mf_h</literal>.

See also gf_compute(‘gradient’, mesh_fem mf_du).

UP = gf_compute(mesh_fem MF, vec U, 'eval on triangulated
surface', int Nrefine, [vec CVLIST])

[OBSOLETE FUNCTION! will be removed in a future release] Utility function
designed for 2D triangular meshes : returns a list of triangles coordinates with
interpolated U values. This can be used for the accurate visualization of data
defined on a discontinous high order element. On output, the six first rows of UP
contains the triangle coordinates, and the others rows contain the interpolated
values of U (one for each triangle vertex) CVLIST may indicate the list of convex
number that should be consider, if not used then all the mesh convexes will be
used. U should be a row vector.

5.2. gf_compute 25

Scilab Interface, Release 5.4.1

Ui = gf_compute(mesh_fem MF, vec U, 'interpolate on',
{mesh_fem mfi | slice sli | vec pts})

Interpolate a field on another mesh_fem or a slice or a list of points.

• Interpolation on another mesh_fem <literal>mfi</literal>:
<literal>mfi</literal> has to be Lagrangian. If <literal>mf</literal>
and <literal>mfi</literal> share the same mesh object, the interpolation
will be much faster.

• Interpolation on a slice <literal>sli</literal>: this is similar to interpola-
tion on a refined P1-discontinuous mesh, but it is much faster. This can
also be used with gf_slice(‘points’) to obtain field values at a given set
of points.

• Interpolation on a set of points <literal>pts</literal>

See also gf_asm(‘interpolation matrix’)

Ue = gf_compute(mesh_fem MF, vec U, 'extrapolate on',
mesh_fem mfe)

Extrapolate a field on another mesh_fem.

If the mesh of <literal>mfe</literal> is stricly included in the mesh
of <literal>mf</literal>, this function does stricly the same job as
gf_compute(‘interpolate_on’). However, if the mesh of <literal>mfe</literal>
is not exactly included in <literal>mf</literal> (imagine interpolation between
a curved refined mesh and a coarse mesh), then values which are outside <lit-
eral>mf</literal> will be extrapolated.

See also gf_asm(‘extrapolation matrix’)

E = gf_compute(mesh_fem MF, vec U, 'error estimate', mesh_im
mim)

Compute an a posteriori error estimate.

Currently there is only one which is available: for each convex, the jump of the
normal derivative is integrated on its faces.

E = gf_compute(mesh_fem MF, vec U, 'error estimate nitsche',
mesh_im mim, int GAMMAC, int GAMMAN, scalar lambda_, scalar
mu_, scalar gamma0, scalar f_coeff, scalar vertical_force)

Compute an a posteriori error estimate in the case of Nitsche method.

Currently there is only one which is available: for each convex, the jump of the
normal derivative is integrated on its faces.

gf_compute(mesh_fem MF, vec U, 'convect', mesh_fem mf_v,
vec V, scalar dt, int nt[, string option[, vec per_min, vec
per_max]])

Compute a convection of <literal>U</literal> with regards to a steady state ve-
locity field <literal>V</literal> with a Characteristic-Galerkin method. The re-
sult is returned in-place in <literal>U</literal>. This method is restricted to
pure Lagrange fems for U. <literal>mf_v</literal> should represent a contin-
uous finite element method. <literal>dt</literal> is the integration time and <lit-
eral>nt</literal> is the number of integration step on the caracteristics. <lit-

26 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

eral>option</literal> is an option for the part of the boundary where there is
a re-entrant convection. <literal>option = ‘extrapolation’</literal> for an ex-
trapolation on the nearest element, <literal>option = ‘unchanged’</literal> for a
constant value on that boundary or <literal>option = ‘periodicity’</literal> for
a peridiodic boundary. For this latter option the two vectors per_min, per_max
has to be given and represent the limits of the periodic domain (on components
where per_max[k] < per_min[k] no operation is done). This method is rather
dissipative, but stable.

5.3 gf_cont_struct

Synopsis

S = gf_cont_struct(model md, string dataname_parameter[,string dataname_
→˓init, string dataname_final, string dataname_current], scalar sc_fac[, ..
→˓.])

Description :

General constructor for cont_struct objects.

This object serves for storing parameters and data used in numerical continuation of solution
branches of models (for more details about continuation see the GetFEM user documenta-
tion).

Command list :

S = gf_cont_struct(model md, string dataname_parameter[,
string dataname_init, string dataname_final, string
dataname_current], scalar sc_fac[, ...])

The variable <literal>dataname_parameter</literal> should parametrise
the model given by <literal>md</literal>. If the parameterization is
done via a vector datum, <literal>dataname_init</literal> and <lit-
eral>dataname_final</literal> should store two given values of this datum
determining the parameterization, and <literal>dataname_current</literal>
serves for actual values of this datum. <literal>sc_fac</literal> is a scale factor
involved in the weighted norm used in the continuation.

Additional options:

• ‘lsolver’, string SOLVER_NAME name of the solver to be used for the
incorporated linear systems (the default value is ‘auto’, which lets
getfem choose itself); possible values are ‘superlu’, ‘mumps’ (if sup-
ported), ‘cg/ildlt’, ‘gmres/ilu’ and ‘gmres/ilut’;

• ‘h_init’, scalar HIN initial step size (the default value is 1e-2);

• ‘h_max’, scalar HMAX maximum step size (the default value is 1e-1);

• ‘h_min’, scalar HMIN minimum step size (the default value is 1e-5);

• ‘h_inc’, scalar HINC factor for enlarging the step size (the default value
is 1.3);

• ‘h_dec’, scalar HDEC factor for diminishing the step size (the default
value is 0.5);

5.3. gf_cont_struct 27

Scilab Interface, Release 5.4.1

• ‘max_iter’, int MIT maximum number of iterations allowed in the correc-
tion (the default value is 10);

• ‘thr_iter’, int TIT threshold number of iterations of the correction for en-
larging the step size (the default value is 4);

• ‘max_res’, scalar RES target residual value of a new point on the solution
curve (the default value is 1e-6);

• ‘max_diff’, scalar DIFF determines a convergence criterion for two con-
secutive points (the default value is 1e-6);

• ‘min_cos’, scalar MCOS minimal value of the cosine of the angle be-
tween tangents to the solution curve at an old point and a new one (the
default value is 0.9);

• ‘max_res_solve’, scalar RES_SOLVE target residual value for the linear
systems to be solved (the default value is 1e-8);

• ‘singularities’, int SING activates tools for detection and treatment of sin-
gular points (1 for limit points, 2 for bifurcation points and points re-
quiring special branching techniques);

• ‘non-smooth’ determines that some special methods for non-smooth prob-
lems can be used;

• ‘delta_max’, scalar DMAX maximum size of division for evaluating the
test function on the convex combination of two augmented Jacobians
that belong to different smooth pieces (the default value is 0.005);

• ‘delta_min’, scalar DMIN minimum size of division for evaluating the
test function on the convex combination (the default value is 0.00012);

• ‘thr_var’, scalar TVAR threshold variation for refining the division (the
default value is 0.02);

• ‘nb_dir’, int NDIR total number of the linear combinations of one couple
of reference vectors when searching for new tangent predictions during
location of new one-sided branches (the default value is 40);

• ‘nb_span’, int NSPAN total number of the couples of the reference vectors
forming the linear combinations (the default value is 1);

• ‘noisy’ or ‘very_noisy’ determines how detailed information has to be dis-
played during the continuation process (residual values etc.).

5.4 gf_cont_struct_get

Synopsis

h = gf_cont_struct_get(cont_struct CS, 'init step size')
h = gf_cont_struct_get(cont_struct CS, 'min step size')
h = gf_cont_struct_get(cont_struct CS, 'max step size')
h = gf_cont_struct_get(cont_struct CS, 'step size decrement')
h = gf_cont_struct_get(cont_struct CS, 'step size increment')
[vec tangent_sol, scalar tangent_par] = gf_cont_struct_get(cont_struct CS,
→˓'compute tangent', vec solution, scalar parameter, vec tangent_sol,
→˓scalar tangent_par) (continues on next page)

28 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

E = gf_cont_struct_get(cont_struct CS, 'init Moore-Penrose continuation',
→˓vec solution, scalar parameter, scalar init_dir)
E = gf_cont_struct_get(cont_struct CS, 'Moore-Penrose continuation', vec
→˓solution, scalar parameter, vec tangent_sol, scalar tangent_par, scalar
→˓h)
t = gf_cont_struct_get(cont_struct CS, 'non-smooth bifurcation test', vec
→˓solution1, scalar parameter1, vec tangent_sol1, scalar tangent_par1, vec
→˓solution2, scalar parameter2, vec tangent_sol2, scalar tangent_par2)
t = gf_cont_struct_get(cont_struct CS, 'bifurcation test function')
{X, gamma, T_X, T_gamma} = gf_cont_struct_get(cont_struct CS, 'sing_data')
s = gf_cont_struct_get(cont_struct CS, 'char')
gf_cont_struct_get(cont_struct CS, 'display')

Description :

General function for querying information about cont_struct objects and for applying them
to numerical continuation.

Command list :

h = gf_cont_struct_get(cont_struct CS, 'init step size')

Return an initial step size for continuation.

h = gf_cont_struct_get(cont_struct CS, 'min step size')

Return the minimum step size for continuation.

h = gf_cont_struct_get(cont_struct CS, 'max step size')

Return the maximum step size for continuation.

h = gf_cont_struct_get(cont_struct CS, 'step size
decrement')

Return the decrement ratio of the step size for continuation.

h = gf_cont_struct_get(cont_struct CS, 'step size
increment')

Return the increment ratio of the step size for continuation.

[vec tangent_sol, scalar tangent_par] = gf_cont_struct_get(cont_struct
CS, 'compute tangent', vec solution, scalar parameter, vec
tangent_sol, scalar tangent_par)

Compute and return an updated tangent.

E = gf_cont_struct_get(cont_struct CS, 'init Moore-Penrose
continuation', vec solution, scalar parameter, scalar
init_dir)

Initialise the Moore-Penrose continuation: Return a unit tangent to the
solution curve at the point given by <literal>solution</literal> and <lit-
eral>parameter</literal>, and an initial step size for the continuation. Orien-
tation of the computed tangent with respect to the parameter is determined by
the sign of <literal>init_dir</literal>.

5.4. gf_cont_struct_get 29

Scilab Interface, Release 5.4.1

E = gf_cont_struct_get(cont_struct CS, 'Moore-Penrose
continuation', vec solution, scalar parameter, vec
tangent_sol, scalar tangent_par, scalar h)

Compute one step of the Moore-Penrose continuation: Take the point given
by <literal>solution</literal> and <literal>parameter</literal>, the tangent given
by <literal>tangent_sol</literal> and <literal>tangent_par</literal>, and the step
size <literal>h</literal>. Return a new point on the solution curve, the corre-
sponding tangent, a step size for the next step and optionally the current step
size. If the returned step size equals zero, the continuation has failed. Option-
ally, return the type of any detected singular point. NOTE: The new point need
not to be saved in the model in the end!

t = gf_cont_struct_get(cont_struct CS, 'non-smooth
bifurcation test', vec solution1, scalar parameter1, vec
tangent_sol1, scalar tangent_par1, vec solution2, scalar
parameter2, vec tangent_sol2, scalar tangent_par2)

Test for a non-smooth bifurcation point between the point given by <lit-
eral>solution1</literal> and <literal>parameter1</literal> with the tangent
given by <literal>tangent_sol1</literal> and <literal>tangent_par1</literal> and
the point given by <literal>solution2</literal> and <literal>parameter2</literal>
with the tangent given by <literal>tangent_sol2</literal> and <lit-
eral>tangent_par2</literal>.

t = gf_cont_struct_get(cont_struct CS, 'bifurcation test
function')

Return the last value of the bifurcation test function and eventually the whole
calculated graph when passing between different sub-domains of differentiabil-
ity.

{X, gamma, T_X, T_gamma} = gf_cont_struct_get(cont_struct
CS, 'sing_data')

Return a singular point (<literal>X</literal>, <literal>gamma</literal>) stored
in the cont_struct object and a couple of arrays (<literal>T_X</literal>, <lit-
eral>T_gamma</literal>) of tangents to all located solution branches that em-
anate from there.

s = gf_cont_struct_get(cont_struct CS, 'char')

Output a (unique) string representation of the cont_struct.

This can be used for performing comparisons between two different cont_struct
objects. This function is to be completed.

gf_cont_struct_get(cont_struct CS, 'display')

Display a short summary for a cont_struct object.

5.5 gf_cvstruct_get

Synopsis

30 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

n = gf_cvstruct_get(cvstruct CVS, 'nbpts')
d = gf_cvstruct_get(cvstruct CVS, 'dim')
cs = gf_cvstruct_get(cvstruct CVS, 'basic structure')
cs = gf_cvstruct_get(cvstruct CVS, 'face', int F)
I = gf_cvstruct_get(cvstruct CVS, 'facepts', int F)
s = gf_cvstruct_get(cvstruct CVS, 'char')
gf_cvstruct_get(cvstruct CVS, 'display')

Description :

General function for querying information about convex_structure objects.

The convex structures are internal structures of GetFEM. They do not contain points po-
sitions. These structures are recursive, since the faces of a convex structures are convex
structures.

Command list :

n = gf_cvstruct_get(cvstruct CVS, 'nbpts')

Get the number of points of the convex structure.

d = gf_cvstruct_get(cvstruct CVS, 'dim')

Get the dimension of the convex structure.

cs = gf_cvstruct_get(cvstruct CVS, 'basic structure')

Get the simplest convex structure.

For example, the ‘basic structure’ of the 6-node triangle, is the canonical 3-noded
triangle.

cs = gf_cvstruct_get(cvstruct CVS, 'face', int F)

Return the convex structure of the face <literal>F</literal>.

I = gf_cvstruct_get(cvstruct CVS, 'facepts', int F)

Return the list of point indices for the face <literal>F</literal>.

s = gf_cvstruct_get(cvstruct CVS, 'char')

Output a string description of the cvstruct.

gf_cvstruct_get(cvstruct CVS, 'display')

displays a short summary for a cvstruct object.

5.6 gf_delete

Synopsis

gf_delete(I[, J, K,...])

Description :

Delete an existing getfem object from memory (mesh, mesh_fem, etc.).

SEE ALSO: gf_workspace, gf_mesh, gf_mesh_fem.

5.6. gf_delete 31

Scilab Interface, Release 5.4.1

Command list :

gf_delete(I[, J, K,...])

I should be a descriptor given by gf_mesh(), gf_mesh_im(), gf_slice() etc.

Note that if another object uses I, then object I will be deleted only when both
have been asked for deletion.

Only objects listed in the output of gf_workspace(‘stats’) can be deleted (for
example gf_fem objects cannot be destroyed).

You may also use gf_workspace(‘clear all’) to erase everything at once.

5.7 gf_eltm

Synopsis

E = gf_eltm('base', fem FEM)
E = gf_eltm('grad', fem FEM)
E = gf_eltm('hessian', fem FEM)
E = gf_eltm('normal')
E = gf_eltm('grad_geotrans')
E = gf_eltm('grad_geotrans_inv')
E = gf_eltm('product', eltm A, eltm B)

Description :

General constructor for eltm objects.

This object represents a type of elementary matrix. In order to obtain a numerical value of
these matrices, see gf_mesh_im_get(mesh_im MI, ‘eltm’).

If you have very particular assembling needs, or if you just want to check the content of
an elementary matrix, this function might be useful. But the generic assembly abilities of
gf_asm(. . .) should suit most needs.

Command list :

E = gf_eltm('base', fem FEM)

return a descriptor for the integration of shape functions on elements, using the
fem <literal>FEM</literal>.

E = gf_eltm('grad', fem FEM)

return a descriptor for the integration of the gradient of shape functions on ele-
ments, using the fem <literal>FEM</literal>.

E = gf_eltm('hessian', fem FEM)

return a descriptor for the integration of the hessian of shape functions on ele-
ments, using the fem <literal>FEM</literal>.

E = gf_eltm('normal')

return a descriptor for the unit normal of convex faces.

E = gf_eltm('grad_geotrans')

32 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

return a descriptor to the gradient matrix of the geometric transformation.

E = gf_eltm('grad_geotrans_inv')

return a descriptor to the inverse of the gradient matrix of the geometric trans-
formation (this is rarely used).

E = gf_eltm('product', eltm A, eltm B)

return a descriptor for the integration of the tensorial product of elementary ma-
trices <literal>A</literal> and <literal>B</literal>.

5.8 gf_fem

Synopsis

F = gf_fem('interpolated_fem', mesh_fem mf_source, mesh_im mim_target,
→˓[ivec blocked_dofs[, bool caching]])
F = gf_fem('projected_fem', mesh_fem mf_source, mesh_im mim_target, int rg_
→˓source, int rg_target[, ivec blocked_dofs[, bool caching]])
F = gf_fem(string fem_name)

Description :

General constructor for fem objects.

This object represents a finite element method on a reference element.

Command list :

F = gf_fem('interpolated_fem', mesh_fem mf_source, mesh_im
mim_target, [ivec blocked_dofs[, bool caching]])

Build a special fem which is interpolated from another mesh_fem.

Using this special finite element, it is possible to interpolate a given mesh_fem
<literal>mf_source</literal> on another mesh, given the integration method <lit-
eral>mim_target</literal> that will be used on this mesh.

Note that this finite element may be quite slow or consume much memory de-
pending if caching is used or not. By default <literal>caching</literal> is True

F = gf_fem('projected_fem', mesh_fem mf_source, mesh_im
mim_target, int rg_source, int rg_target[, ivec
blocked_dofs[, bool caching]])

Build a special fem which is interpolated from another mesh_fem.

Using this special finite element, it is possible to interpolate a given mesh_fem
<literal>mf_source</literal> on another mesh, given the integration method <lit-
eral>mim_target</literal> that will be used on this mesh.

Note that this finite element may be quite slow or consume much memory de-
pending if caching is used or not. By default <literal>caching</literal> is True

F = gf_fem(string fem_name)

The <literal>fem_name</literal> should contain a description of the finite ele-
ment method. Please refer to the GetFEM manual (especially the description of

5.8. gf_fem 33

Scilab Interface, Release 5.4.1

finite element and integration methods) for a complete reference. Here is a list
of some of them:

• FEM_PK(n,k) : classical Lagrange element Pk on a simplex of dimension
<literal>n</literal>.

• FEM_PK_DISCONTINUOUS(n,k[,alpha]) : discontinuous Lagrange ele-
ment Pk on a simplex of dimension <literal>n</literal>.

• FEM_QK(n,k) : classical Lagrange element Qk on quadrangles, hexahe-
drons etc.

• FEM_QK_DISCONTINUOUS(n,k[,alpha]) : discontinuous Lagrange ele-
ment Qk on quadrangles, hexahedrons etc.

• FEM_Q2_INCOMPLETE(n) : incomplete Q2 elements with 8 and 20 dof
(serendipity Quad 8 and Hexa 20 elements).

• FEM_PK_PRISM(n,k) : classical Lagrange element Pk on a prism of di-
mension <literal>n</literal>.

• FEM_PK_PRISM_DISCONTINUOUS(n,k[,alpha]) : classical discontinu-
ous Lagrange element Pk on a prism.

• FEM_PK_WITH_CUBIC_BUBBLE(n,k) : classical Lagrange element Pk
on a simplex with an additional volumic bubble function.

• FEM_P1_NONCONFORMING : non-conforming P1 method on a triangle.

• FEM_P1_BUBBLE_FACE(n) : P1 method on a simplex with an additional
bubble function on face 0.

• FEM_P1_BUBBLE_FACE_LAG : P1 method on a simplex with an addi-
tional lagrange dof on face 0.

• FEM_PK_HIERARCHICAL(n,k) : PK element with a hierarchical basis.

• FEM_QK_HIERARCHICAL(n,k) : QK element with a hierarchical basis.

• FEM_PK_PRISM_HIERARCHICAL(n,k) : PK element on a prism with a
hierarchical basis.

• FEM_STRUCTURED_COMPOSITE(fem f,k) : Composite fem <lit-
eral>f</literal> on a grid with <literal>k</literal> divisions.

• FEM_PK_HIERARCHICAL_COMPOSITE(n,k,s) : Pk composite element
on a grid with <literal>s</literal> subdivisions and with a hierarchical basis.

• FEM_PK_FULL_HIERARCHICAL_COMPOSITE(n,k,s) : Pk composite
element with <literal>s</literal> subdivisions and a hierarchical basis on
both degree and subdivision.

• FEM_PRODUCT(A,B) : tensorial product of two polynomial elements.

• FEM_HERMITE(n) : Hermite element P3 on a simplex of dimension <lit-
eral>n = 1, 2, 3</literal>.

• FEM_ARGYRIS : Argyris element P5 on the triangle.

• FEM_HCT_TRIANGLE : Hsieh-Clough-Tocher element on the tri-
angle (composite P3 element which is C1), should be used with
IM_HCT_COMPOSITE() integration method.

34 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

• FEM_QUADC1_COMPOSITE : Quadrilateral element, composite P3 ele-
ment and C1 (16 dof).

• FEM_REDUCED_QUADC1_COMPOSITE : Quadrilateral element, com-
posite P3 element and C1 (12 dof).

• FEM_RT0(n) : Raviart-Thomas element of order 0 on a simplex of dimen-
sion <literal>n</literal>.

• FEM_NEDELEC(n) : Nedelec edge element of order 0 on a simplex of
dimension <literal>n</literal>.

Of course, you have to ensure that the selected fem is compatible with the geo-
metric transformation: a Pk fem has no meaning on a quadrangle.

5.9 gf_fem_get

Synopsis

n = gf_fem_get(fem F, 'nbdof'[, int cv])
n = gf_fem_get(fem F, 'index of global dof', cv)
d = gf_fem_get(fem F, 'dim')
td = gf_fem_get(fem F, 'target_dim')
P = gf_fem_get(fem F, 'pts'[, int cv])
b = gf_fem_get(fem F, 'is_equivalent')
b = gf_fem_get(fem F, 'is_lagrange')
b = gf_fem_get(fem F, 'is_polynomial')
d = gf_fem_get(fem F, 'estimated_degree')
E = gf_fem_get(fem F, 'base_value',mat p)
ED = gf_fem_get(fem F, 'grad_base_value',mat p)
EH = gf_fem_get(fem F, 'hess_base_value',mat p)
gf_fem_get(fem F, 'poly_str')
string = gf_fem_get(fem F, 'char')
gf_fem_get(fem F, 'display')

Description :

General function for querying information about FEM objects.

Command list :

n = gf_fem_get(fem F, 'nbdof'[, int cv])

Return the number of dof for the fem.

Some specific fem (for example ‘interpolated_fem’) may require a convex num-
ber <literal>cv</literal> to give their result. In most of the case, you can omit
this convex number.

n = gf_fem_get(fem F, 'index of global dof', cv)

Return the index of global dof for special fems such as interpolated fem.

d = gf_fem_get(fem F, 'dim')

Return the dimension (dimension of the reference convex) of the fem.

td = gf_fem_get(fem F, 'target_dim')

5.9. gf_fem_get 35

Scilab Interface, Release 5.4.1

Return the dimension of the target space.

The target space dimension is usually 1, except for vector fem.

P = gf_fem_get(fem F, 'pts'[, int cv])

Get the location of the dof on the reference element.

Some specific fem may require a convex number <literal>cv</literal> to give
their result (for example ‘interpolated_fem’). In most of the case, you can omit
this convex number.

b = gf_fem_get(fem F, 'is_equivalent')

Return 0 if the fem is not equivalent.

Equivalent fem are evaluated on the reference convex. This is the case of most
classical fem’s.

b = gf_fem_get(fem F, 'is_lagrange')

Return 0 if the fem is not of Lagrange type.

b = gf_fem_get(fem F, 'is_polynomial')

Return 0 if the basis functions are not polynomials.

d = gf_fem_get(fem F, 'estimated_degree')

Return an estimation of the polynomial degree of the fem.

This is an estimation for fem which are not polynomials.

E = gf_fem_get(fem F, 'base_value',mat p)

Evaluate all basis functions of the FEM at point <literal>p</literal>.

<literal>p</literal> is supposed to be in the reference convex!

ED = gf_fem_get(fem F, 'grad_base_value',mat p)

Evaluate the gradient of all base functions of the fem at point <literal>p</literal>.

<literal>p</literal> is supposed to be in the reference convex!

EH = gf_fem_get(fem F, 'hess_base_value',mat p)

Evaluate the Hessian of all base functions of the fem at point <literal>p</literal>.

<literal>p</literal> is supposed to be in the reference convex!

gf_fem_get(fem F, 'poly_str')

Return the polynomial expressions of its basis functions in the reference convex.

The result is expressed as a cell array of strings. Of course this will fail on
non-polynomial fem’s.

string = gf_fem_get(fem F, 'char')

Ouput a (unique) string representation of the fem.

This can be used to perform comparisons between two different fem objects.

gf_fem_get(fem F, 'display')

displays a short summary for a fem object.

36 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

5.10 gf_geotrans

Synopsis

GT = gf_geotrans(string name)

Description :

General constructor for geotrans objects.

The geometric transformation must be used when you are building a custom mesh convex by
convex (see the add_convex() function of mesh): it also defines the kind of convex (triangle,
hexahedron, prism, etc..)

Command list :

GT = gf_geotrans(string name)

The name argument contains the specification of the geometric transformation
as a string, which may be:

• GT_PK(n,k) : Transformation on simplexes, dim <literal>n</literal>, de-
gree <literal>k</literal>.

• GT_QK(n,k) : Transformation on parallelepipeds, dim <literal>n</literal>,
degree <literal>k</literal>.

• GT_PRISM(n,k) : Transformation on prisms, dim <literal>n</literal>, de-
gree <literal>k</literal>.

• GT_PRODUCT(A,B) : Tensorial product of two transformations.

• GT_LINEAR_PRODUCT(geotrans gt1,geotrans gt2) : Linear tensorial
product of two transformations

5.11 gf_geotrans_get

Synopsis

d = gf_geotrans_get(geotrans GT, 'dim')
b = gf_geotrans_get(geotrans GT, 'is_linear')
n = gf_geotrans_get(geotrans GT, 'nbpts')
P = gf_geotrans_get(geotrans GT, 'pts')
N = gf_geotrans_get(geotrans GT, 'normals')
Pt = gf_geotrans_get(geotrans GT, 'transform',mat G, mat Pr)
s = gf_geotrans_get(geotrans GT, 'char')
gf_geotrans_get(geotrans GT, 'display')

Description :

General function for querying information about geometric transformations objects.

Command list :

d = gf_geotrans_get(geotrans GT, 'dim')

Get the dimension of the geotrans.

5.10. gf_geotrans 37

Scilab Interface, Release 5.4.1

This is the dimension of the source space, i.e. the dimension of the reference
convex.

b = gf_geotrans_get(geotrans GT, 'is_linear')

Return 0 if the geotrans is not linear.

n = gf_geotrans_get(geotrans GT, 'nbpts')

Return the number of points of the geotrans.

P = gf_geotrans_get(geotrans GT, 'pts')

Return the reference convex points of the geotrans.

The points are stored in the columns of the output matrix.

N = gf_geotrans_get(geotrans GT, 'normals')

Get the normals for each face of the reference convex of the geotrans.

The normals are stored in the columns of the output matrix.

Pt = gf_geotrans_get(geotrans GT, 'transform',mat G, mat Pr)

Apply the geotrans to a set of points.

<literal>G</literal> is the set of vertices of the real convex, <literal>Pr</literal>
is the set of points (in the reference convex) that are to be transformed. The
corresponding set of points in the real convex is returned.

s = gf_geotrans_get(geotrans GT, 'char')

Output a (unique) string representation of the geotrans.

This can be used to perform comparisons between two different geotrans objects.

gf_geotrans_get(geotrans GT, 'display')

displays a short summary for a geotrans object.

5.12 gf_global_function

Synopsis

GF = gf_global_function('cutoff', int fn, scalar r, scalar r1, scalar r0)
GF = gf_global_function('crack', int fn)
GF = gf_global_function('parser', string val[, string grad[, string hess]])
GF = gf_global_function('product', global_function F, global_function G)
GF = gf_global_function('add', global_function gf1, global_function gf2)

Description :

General constructor for global_function objects.

Global function object is represented by three functions:

• The function <literal>val</literal>.

• The function gradient <literal>grad</literal>.

• The function Hessian <literal>hess</literal>.

38 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

this type of function is used as local and global enrichment function. The global function
Hessian is an optional parameter (only for fourth order derivative problems).

Command list :

GF = gf_global_function('cutoff', int fn, scalar r, scalar
r1, scalar r0)

Create a cutoff global function.

GF = gf_global_function('crack', int fn)

Create a near-tip asymptotic global function for modelling cracks.

GF = gf_global_function('parser', string val[, string grad[,
string hess]])

Create a global function from strings <literal>val</literal>, <lit-
eral>grad</literal> and <literal>hess</literal>. This function could be
improved by using the derivation of the generic assembly language . . . to be
done.

GF = gf_global_function('product', global_function F,
global_function G)

Create a product of two global functions.

GF = gf_global_function('add', global_function gf1,
global_function gf2)

Create a add of two global functions.

5.13 gf_global_function_get

Synopsis

VALs = gf_global_function_get(global_function GF, 'val',mat PTs)
GRADs = gf_global_function_get(global_function GF, 'grad',mat PTs)
HESSs = gf_global_function_get(global_function GF, 'hess',mat PTs)
s = gf_global_function_get(global_function GF, 'char')
gf_global_function_get(global_function GF, 'display')

Description :

General function for querying information about global_function objects.

Command list :

VALs = gf_global_function_get(global_function GF, 'val',mat
PTs)

Return <literal>val</literal> function evaluation in <literal>PTs</literal> (col-
umn points).

GRADs = gf_global_function_get(global_function GF, 'grad',
mat PTs)

Return <literal>grad</literal> function evaluation in <literal>PTs</literal> (col-
umn points).

5.13. gf_global_function_get 39

Scilab Interface, Release 5.4.1

On return, each column of <literal>GRADs</literal> is of the form [Gx,Gy].

HESSs = gf_global_function_get(global_function GF, 'hess',
mat PTs)

Return <literal>hess</literal> function evaluation in <literal>PTs</literal> (col-
umn points).

On return, each column of <literal>HESSs</literal> is of the form
[Hxx,Hxy,Hyx,Hyy].

s = gf_global_function_get(global_function GF, 'char')

Output a (unique) string representation of the global_function.

This can be used to perform comparisons between two different global_function
objects. This function is to be completed.

gf_global_function_get(global_function GF, 'display')

displays a short summary for a global_function object.

5.14 gf_integ

Synopsis

I = gf_integ(string method)

Description :

General constructor for integ objects.

General object for obtaining handles to various integrations methods on convexes (used
when the elementary matrices are built).

Command list :

I = gf_integ(string method)

Here is a list of some integration methods defined in GetFEM (see the description
of finite element and integration methods for a complete reference):

• IM_EXACT_SIMPLEX(n) : Exact integration on simplices (works only
with linear geometric transformations and PK fem’s).

• IM_PRODUCT(A,B) : Product of two integration methods.

• IM_EXACT_PARALLELEPIPED(n) : Exact integration on paral-
lelepipeds.

• IM_EXACT_PRISM(n) : Exact integration on prisms.

• IM_GAUSS1D(k) : Gauss method on the segment, order <lit-
eral>k=1,3,. . . ,99</literal>.

• IM_NC(n,k) : Newton-Cotes approximative integration on simplexes, order
<literal>k</literal>.

• IM_NC_PARALLELEPIPED(n,k) : Product of Newton-Cotes integration
on parallelepipeds.

40 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

• IM_NC_PRISM(n,k) : Product of Newton-Cotes integration on prisms.

• IM_GAUSS_PARALLELEPIPED(n,k) : Product of Gauss1D integration
on parallelepipeds.

• IM_TRIANGLE(k) : Gauss methods on triangles <lit-
eral>k=1,3,5,6,7,8,9,10,13,17,19</literal>.

• IM_QUAD(k) : Gauss methods on quadrilaterons <literal>k=2,3,5,
. . . ,17</literal>. Note that IM_GAUSS_PARALLELEPIPED should be
prefered for QK fem’s.

• IM_TETRAHEDRON(k) : Gauss methods on tetrahedrons <lit-
eral>k=1,2,3,5,6 or 8</literal>.

• IM_SIMPLEX4D(3) : Gauss method on a 4-dimensional simplex.

• IM_STRUCTURED_COMPOSITE(im,k) : Composite method on a grid
with <literal>k</literal> divisions.

• IM_HCT_COMPOSITE(im) : Composite integration suited to the HCT
composite finite element.

Example:

• I = gf_integ(‘IM_PRODUCT(IM_GAUSS1D(5),IM_GAUSS1D(5))’)

is the same as:

• I = gf_integ(‘IM_GAUSS_PARALLELEPIPED(2,5)’)

Note that ‘exact integration’ should be avoided in general, since they only apply
to linear geometric transformations, are quite slow, and subject to numerical
stability problems for high degree fem’s.

5.15 gf_integ_get

Synopsis

b = gf_integ_get(integ I, 'is_exact')
d = gf_integ_get(integ I, 'dim')
n = gf_integ_get(integ I, 'nbpts')
Pp = gf_integ_get(integ I, 'pts')
Pf = gf_integ_get(integ I, 'face_pts',F)
Cp = gf_integ_get(integ I, 'coeffs')
Cf = gf_integ_get(integ I, 'face_coeffs',F)
s = gf_integ_get(integ I, 'char')
gf_integ_get(integ I, 'display')

Description :

General function for querying information about integration method objects.

Command list :

b = gf_integ_get(integ I, 'is_exact')

Return 0 if the integration is an approximate one.

d = gf_integ_get(integ I, 'dim')

5.15. gf_integ_get 41

Scilab Interface, Release 5.4.1

Return the dimension of the reference convex of the method.

n = gf_integ_get(integ I, 'nbpts')

Return the total number of integration points.

Count the points for the volume integration, and points for surface integration on
each face of the reference convex.

Only for approximate methods, this has no meaning for exact integration meth-
ods!

Pp = gf_integ_get(integ I, 'pts')

Return the list of integration points

Only for approximate methods, this has no meaning for exact integration meth-
ods!

Pf = gf_integ_get(integ I, 'face_pts',F)

Return the list of integration points for a face.

Only for approximate methods, this has no meaning for exact integration meth-
ods!

Cp = gf_integ_get(integ I, 'coeffs')

Returns the coefficients associated to each integration point.

Only for approximate methods, this has no meaning for exact integration meth-
ods!

Cf = gf_integ_get(integ I, 'face_coeffs',F)

Returns the coefficients associated to each integration of a face.

Only for approximate methods, this has no meaning for exact integration meth-
ods!

s = gf_integ_get(integ I, 'char')

Ouput a (unique) string representation of the integration method.

This can be used to comparisons between two different integ objects.

gf_integ_get(integ I, 'display')

displays a short summary for a integ object.

5.16 gf_levelset

Synopsis

LS = gf_levelset(mesh m, int d[, string 'ws'| string f1[, string f2 |
→˓string 'ws']])

Description :

General constructor for levelset objects.

42 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

The level-set object is represented by a primary level-set and optionally a secondary level-
set used to represent fractures (if p(x) is the primary level-set function and s(x) is the sec-
ondary level-set, the crack is defined by <latex style=”text”><![CDATA[p(x)=0]]></latex>
and <latex style=”text”><![CDATA[s(x)leq0]]></latex> : the role of the secondary is to
determine the crack front/tip).

note:

All tools listed below need the package qhull installed on your system. This
package is widely available. It computes convex hull and delaunay triangulations
in arbitrary dimension.

Command list :

LS = gf_levelset(mesh m, int d[, string 'ws'| string f1[,
string f2 | string 'ws']])

Create a levelset object on a mesh represented by a primary function (and op-
tional secondary function, both) defined on a lagrange mesh_fem of degree <lit-
eral>d</literal>.

If <literal>ws</literal> (with secondary) is set; this levelset is represented by a
primary function and a secondary function. If <literal>f1</literal> is set; the pri-
mary function is defined by that expression (with the syntax of the high generic
assembly language). If <literal>f2</literal> is set; this levelset is represented by
a primary function and a secondary function defined by these expressions.

5.17 gf_levelset_get

Synopsis

V = gf_levelset_get(levelset LS, 'values', int nls)
d = gf_levelset_get(levelset LS, 'degree')
mf = gf_levelset_get(levelset LS, 'mf')
z = gf_levelset_get(levelset LS, 'memsize')
s = gf_levelset_get(levelset LS, 'char')
gf_levelset_get(levelset LS, 'display')

Description :

General function for querying information about LEVELSET objects.

Command list :

V = gf_levelset_get(levelset LS, 'values', int nls)

Return the vector of dof for <literal>nls</literal> function.

If <literal>nls</literal> is 0, the method return the vector of dof for the primary
level-set function. If <literal>nls</literal> is 1, the method return the vector of
dof for the secondary level-set function (if any).

d = gf_levelset_get(levelset LS, 'degree')

Return the degree of lagrange representation.

mf = gf_levelset_get(levelset LS, 'mf')

5.17. gf_levelset_get 43

Scilab Interface, Release 5.4.1

Return a reference on the mesh_fem object.

z = gf_levelset_get(levelset LS, 'memsize')

Return the amount of memory (in bytes) used by the level-set.

s = gf_levelset_get(levelset LS, 'char')

Output a (unique) string representation of the levelset.

This can be used to perform comparisons between two different levelset objects.
This function is to be completed.

gf_levelset_get(levelset LS, 'display')

displays a short summary for a levelset.

5.18 gf_levelset_set

Synopsis

gf_levelset_set(levelset LS, 'values', {mat v1|string func_1}[, mat
→˓v2|string func_2])
gf_levelset_set(levelset LS, 'simplify'[, scalar eps=0.01])

Description :

General function for modification of LEVELSET objects.

Command list :

gf_levelset_set(levelset LS, 'values', {mat v1|string
func_1}[, mat v2|string func_2])

Set values of the vector of dof for the level-set functions.

Set the primary function with the vector of dof <literal>v1</literal> (or the ex-
pression <literal>func_1</literal>) and the secondary function (if any) with the
vector of dof <literal>v2</literal> (or the expression <literal>func_2</literal>)

gf_levelset_set(levelset LS, 'simplify'[, scalar eps=0.01])

Simplify dof of level-set optionally with the parameter <literal>eps</literal>.

5.19 gf_linsolve

Synopsis

X = gf_linsolve('gmres', spmat M, vec b[, int restart][, precond P][,'noisy
→˓'][,'res', r][,'maxiter', n])
X = gf_linsolve('cg', spmat M, vec b [, precond P][,'noisy'][,'res', r][,
→˓'maxiter', n])
X = gf_linsolve('bicgstab', spmat M, vec b [, precond P][,'noisy'][,'res',
→˓r][,'maxiter', n])
{U, cond} = gf_linsolve('lu', spmat M, vec b)
{U, cond} = gf_linsolve('superlu', spmat M, vec b)
{U, cond} = gf_linsolve('mumps', spmat M, vec b)

44 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Description :

Various linear system solvers.

Command list :

X = gf_linsolve('gmres', spmat M, vec b[, int restart][,
precond P][,'noisy'][,'res', r][,'maxiter', n])

Solve <literal>M.X = b</literal> with the generalized minimum residuals
method.

Optionally using <literal>P</literal> as preconditioner. The default value of the
restart parameter is 50.

X = gf_linsolve('cg', spmat M, vec b [, precond P][,
'noisy'][,'res', r][,'maxiter', n])

Solve <literal>M.X = b</literal> with the conjugated gradient method.

Optionally using <literal>P</literal> as preconditioner.

X = gf_linsolve('bicgstab', spmat M, vec b [, precond P][,
'noisy'][,'res', r][,'maxiter', n])

Solve <literal>M.X = b</literal> with the bi-conjugated gradient stabilized
method.

Optionally using <literal>P</literal> as a preconditioner.

{U, cond} = gf_linsolve('lu', spmat M, vec b)

Alias for gf_linsolve(‘superlu’,. . .)

{U, cond} = gf_linsolve('superlu', spmat M, vec b)

Solve <literal>M.U = b</literal> apply the SuperLU solver (sparse LU factor-
ization).

The condition number estimate <literal>cond</literal> is returned with the solu-
tion <literal>U</literal>.

{U, cond} = gf_linsolve('mumps', spmat M, vec b)

Solve <literal>M.U = b</literal> using the MUMPS solver.

5.20 gf_mesh

Synopsis

M = gf_mesh('empty', int dim)
M = gf_mesh('cartesian', vec X[, vec Y[, vec Z,..]])
M = gf_mesh('pyramidal', vec X[, vec Y[, vec Z,..]])
M = gf_mesh('cartesian Q1', vec X, vec Y[, vec Z,..])
M = gf_mesh('triangles grid', vec X, vec Y)
M = gf_mesh('regular simplices', vec X[, vec Y[, vec Z,...]]['degree', int
→˓k]['noised'])
M = gf_mesh('curved', mesh m, vec F)
M = gf_mesh('prismatic', mesh m, int nl[, int degree])

(continues on next page)

5.20. gf_mesh 45

Scilab Interface, Release 5.4.1

(continued from previous page)

M = gf_mesh('pt2D', mat P, imat T[, int n])
M = gf_mesh('ptND', mat P, imat T)
M = gf_mesh('load', string filename)
M = gf_mesh('from string', string s)
M = gf_mesh('import', string format, string filename)
M = gf_mesh('clone', mesh m2)
M = gf_mesh('generate', mesher_object mo, scalar h[, int K = 1[, mat
→˓vertices]])

Description :

General constructor for mesh objects.

This object is able to store any element in any dimension even if you mix elements with
different dimensions.

Command list :

M = gf_mesh('empty', int dim)

Create a new empty mesh.

M = gf_mesh('cartesian', vec X[, vec Y[, vec Z,..]])

Build quickly a regular mesh of quadrangles, cubes, etc.

M = gf_mesh('pyramidal', vec X[, vec Y[, vec Z,..]])

Build quickly a regular mesh of pyramids, etc.

M = gf_mesh('cartesian Q1', vec X, vec Y[, vec Z,..])

Build quickly a regular mesh of quadrangles, cubes, etc. with Q1 elements.

M = gf_mesh('triangles grid', vec X, vec Y)

Build quickly a regular mesh of triangles.

This is a very limited and somehow deprecated function (See
also <literal></literal>gf_mesh(‘ptND’)<literal></literal>, <lit-
eral></literal>gf_mesh(‘regular simplices’)<literal></literal> and <lit-
eral></literal>gf_mesh(‘cartesian’)<literal></literal>).

M = gf_mesh('regular simplices', vec X[, vec Y[, vec Z,...
]]['degree', int k]['noised'])

Mesh a n-dimensional parallelepiped with simplices (triangles, tetrahedrons etc)
.

The optional degree may be used to build meshes with non linear geometric
transformations.

M = gf_mesh('curved', mesh m, vec F)

Build a curved (n+1)-dimensions mesh from a n-dimensions mesh <lit-
eral>m</literal>.

The points of the new mesh have one additional coordinate, given by the vec-
tor <literal>F</literal>. This can be used to obtain meshes for shells. <lit-
eral>m</literal> may be a mesh_fem object, in that case its linked mesh will
be used.

46 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

M = gf_mesh('prismatic', mesh m, int nl[, int degree])

Extrude a prismatic mesh <literal>M</literal> from a mesh <literal>m</literal>.

In the additional dimension there are <literal>nl</literal> layers of el-
ements distributed from <literal></literal>0<literal></literal> to <lit-
eral></literal>1<literal></literal>. If the optional parameter <lit-
eral>degree</literal> is provided with a value greater than the default
value of <literal></literal>1<literal></literal>, a non-linear transformation of
corresponding degree is considered in the extrusion direction.

M = gf_mesh('pt2D', mat P, imat T[, int n])

Build a mesh from a 2D triangulation.

Each column of <literal>P</literal> contains a point coordinate, and each col-
umn of <literal>T</literal> contains the point indices of a triangle. <lit-
eral>n</literal> is optional and is a zone number. If <literal>n</literal> is spec-
ified then only the zone number <literal>n</literal> is converted (in that case,
<literal>T</literal> is expected to have 4 rows, the fourth containing these zone
numbers).

M = gf_mesh('ptND', mat P, imat T)

Build a mesh from a n-dimensional “triangulation”.

Similar function to ‘pt2D’, for building simplexes meshes from a triangulation
given in <literal>T</literal>, and a list of points given in <literal>P</literal>.
The dimension of the mesh will be the number of rows of <literal>P</literal>,
and the dimension of the simplexes will be the number of rows of <lit-
eral>T</literal>.

M = gf_mesh('load', string filename)

Load a mesh from a GetFEM ascii mesh file.

See also <literal></literal>gf_mesh_get(mesh M, ‘save’, string file-
name)<literal></literal>.

M = gf_mesh('from string', string s)

Load a mesh from a string description.

For example, a string returned by <literal></literal>gf_mesh_get(mesh M,
‘char’)<literal></literal>.

M = gf_mesh('import', string format, string filename)

Import a mesh.

<literal>format</literal> may be:

• ‘gmsh’ for a mesh created with <literal>Gmsh</literal>

• ‘gmsh_with_lower_dim_elt’ for a mesh created with <lit-
eral>Gmsh</literal> and including elements of lower dimension than
the mesh

• ‘gid’ for a mesh created with <literal>GiD</literal>

• ‘cdb’ for a mesh created with <literal>ANSYS</literal>

5.20. gf_mesh 47

Scilab Interface, Release 5.4.1

• ‘am_fmt’ for a mesh created with <literal>EMC2</literal>

M = gf_mesh('clone', mesh m2)

Create a copy of a mesh.

M = gf_mesh('generate', mesher_object mo, scalar h[, int K =
1[, mat vertices]])

Call the experimental mesher of Getfem on the geometry represented by <lit-
eral>mo</literal>. please control the conformity of the produced mesh. You can
help the mesher by adding a priori vertices in the array <literal>vertices</literal>
which should be of size <literal></literal>n x m<literal></literal> where <lit-
eral></literal>n<literal></literal> n is the dimension of the mesh and <lit-
eral></literal>m<literal></literal> the number of points. <literal>h</literal>
is approximate diameter of the elements. <literal>K</literal> is the degree
of the mesh (> 1 for curved boundaries). The mesher try to optimize the
quality of the elements. This operation may be time consuming. Note that
if the mesh generation fails, because of some random procedure used, it can
be run again since it will not give necessarily the same result due to random
procedures used. The messages send to the console by the mesh generation
can be deactivated using <literal>gf_util(‘trace level’, 2)</literal>. More in-
formation can be obtained by <literal>gf_util(‘trace level’, 4)</literal>. See
<literal></literal>gf_mesher_object<literal></literal> to manipulate geometric
primitives in order to describe the geometry.

5.21 gf_mesh_get

Synopsis

d = gf_mesh_get(mesh M, 'dim')
np = gf_mesh_get(mesh M, 'nbpts')
nc = gf_mesh_get(mesh M, 'nbcvs')
P = gf_mesh_get(mesh M, 'pts'[, ivec PIDs])
Pid = gf_mesh_get(mesh M, 'pid')
PIDs = gf_mesh_get(mesh M, 'pid in faces', imat CVFIDs)
PIDs = gf_mesh_get(mesh M, 'pid in cvids', imat CVIDs)
PIDs = gf_mesh_get(mesh M, 'pid in regions', imat RIDs)
PIDs = gf_mesh_get(mesh M, 'pid from coords', mat PTS[, scalar radius=0])
{Pid, IDx} = gf_mesh_get(mesh M, 'pid from cvid'[, imat CVIDs])
{Pts, IDx} = gf_mesh_get(mesh M, 'pts from cvid'[, imat CVIDs])
CVid = gf_mesh_get(mesh M, 'cvid')
m = gf_mesh_get(mesh M, 'max pid')
m = gf_mesh_get(mesh M, 'max cvid')
[E,C] = gf_mesh_get(mesh M, 'edges' [, CVLST][, 'merge'])
[E,C] = gf_mesh_get(mesh M, 'curved edges', int N [, CVLST])
PIDs = gf_mesh_get(mesh M, 'orphaned pid')
CVIDs = gf_mesh_get(mesh M, 'cvid from pid', ivec PIDs[, bool share=False])
CVFIDs = gf_mesh_get(mesh M, 'faces from pid', ivec PIDs)
CVFIDs = gf_mesh_get(mesh M, 'outer faces'[, dim][, CVIDs])
CVFIDs = gf_mesh_get(mesh M, 'inner faces'[, CVIDs])
CVFIDs = gf_mesh_get(mesh M, 'all faces'[, CVIDs])
CVFIDs = gf_mesh_get(mesh M, 'outer faces with direction', vec v, scalar
→˓angle[, dim][, CVIDs])

(continues on next page)

48 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

CVFIDs = gf_mesh_get(mesh M, 'outer faces in box', vec pmin, vec pmax[,
→˓dim][, CVIDs])
CVFIDs = gf_mesh_get(mesh M, 'outer faces in ball', vec center, scalar
→˓radius[, dim][, CVIDs])
CVFIDs = gf_mesh_get(mesh M, 'adjacent face', int cvid, int fid)
CVFIDs = gf_mesh_get(mesh M, 'faces from cvid'[, ivec CVIDs][, 'merge'])
[mat T] = gf_mesh_get(mesh M, 'triangulated surface', int Nrefine [,
→˓CVLIST])
N = gf_mesh_get(mesh M, 'normal of face', int cv, int f[, int nfpt])
N = gf_mesh_get(mesh M, 'normal of faces', imat CVFIDs)
CVIDs = gf_mesh_get(mesh M, 'convexes in box', vec pmin, vec pmax)
Q = gf_mesh_get(mesh M, 'quality'[, ivec CVIDs])
A = gf_mesh_get(mesh M, 'convex area'[, ivec CVIDs])
A = gf_mesh_get(mesh M, 'convex radius'[, ivec CVIDs])
{S, CV2S} = gf_mesh_get(mesh M, 'cvstruct'[, ivec CVIDs])
{GT, CV2GT} = gf_mesh_get(mesh M, 'geotrans'[, ivec CVIDs])
RIDs = gf_mesh_get(mesh M, 'boundaries')
RIDs = gf_mesh_get(mesh M, 'regions')
RIDs = gf_mesh_get(mesh M, 'boundary')
CVFIDs = gf_mesh_get(mesh M, 'region', ivec RIDs)
gf_mesh_get(mesh M, 'save', string filename)
s = gf_mesh_get(mesh M, 'char')
gf_mesh_get(mesh M, 'export to vtk', string filename, ... [,'ascii'][,
→˓'quality'])
gf_mesh_get(mesh M, 'export to vtu', string filename, ... [,'ascii'][,
→˓'quality'])
gf_mesh_get(mesh M, 'export to dx', string filename, ... [,'ascii'][,
→˓'append'][,'as',string name,[,'serie',string serie_name]][,'edges'])
gf_mesh_get(mesh M, 'export to pos', string filename[, string name])
z = gf_mesh_get(mesh M, 'memsize')
gf_mesh_get(mesh M, 'display')

Description :

General mesh inquiry function. All these functions accept also a mesh_fem argument in-
stead of a mesh M (in that case, the mesh_fem linked mesh will be used).

Command list :

d = gf_mesh_get(mesh M, 'dim')

Get the dimension of the mesh (2 for a 2D mesh, etc).

np = gf_mesh_get(mesh M, 'nbpts')

Get the number of points of the mesh.

nc = gf_mesh_get(mesh M, 'nbcvs')

Get the number of convexes of the mesh.

P = gf_mesh_get(mesh M, 'pts'[, ivec PIDs])

Return the list of point coordinates of the mesh.

Each column of the returned matrix contains the coordinates of one point. If
the optional argument <literal>PIDs</literal> was given, only the points whose
#id is listed in this vector are returned. Otherwise, the returned matrix will
have gf_mesh_get(mesh M, ‘max_pid’) columns, which might be greater than

5.21. gf_mesh_get 49

Scilab Interface, Release 5.4.1

gf_mesh_get(mesh M, ‘nbpts’) (if some points of the mesh have been destroyed
and no call to gf_mesh_set(mesh M, ‘optimize structure’) have been issued).
The columns corresponding to deleted points will be filled with NaN. You can
use gf_mesh_get(mesh M, ‘pid’) to filter such invalid points.

Pid = gf_mesh_get(mesh M, 'pid')

Return the list of points #id of the mesh.

Note that their numbering is not supposed to be contiguous from 1 to
gf_mesh_get(mesh M, ‘nbpts’), especially if some points have been removed
from the mesh. You can use gf_mesh_set(mesh M, ‘optimize_structure’) to en-
force a contiguous numbering.

PIDs = gf_mesh_get(mesh M, 'pid in faces', imat CVFIDs)

Return point #id listed in <literal>CVFIDs</literal>.

<literal>CVFIDs</literal> is a two-rows matrix, the first row lists convex #ids,
and the second lists face numbers. On return, <literal>PIDs</literal> is a vector
containing points #id.

PIDs = gf_mesh_get(mesh M, 'pid in cvids', imat CVIDs)

Return point #id listed in <literal>CVIDs</literal>.

<literal>PIDs</literal> is a vector containing points #id.

PIDs = gf_mesh_get(mesh M, 'pid in regions', imat RIDs)

Return point #id listed in <literal>RIDs</literal>.

<literal>PIDs</literal> is a vector containing points #id.

PIDs = gf_mesh_get(mesh M, 'pid from coords', mat PTS[,
scalar radius=0])

Return point #id whose coordinates are listed in <literal>PTS</literal>.

<literal>PTS</literal> is an array containing a list of point coordinates. On
return, <literal>PIDs</literal> is a vector containing points #id for each point
found in <literal>eps</literal> range, and -1 for those which where not found in
the mesh.

{Pid, IDx} = gf_mesh_get(mesh M, 'pid from cvid'[, imat
CVIDs])

Return the points attached to each convex of the mesh.

If <literal>CVIDs</literal> is omitted, all the convexes will be considered
(equivalent to <literal>CVIDs = gf_mesh_get(mesh M, ‘max cvid’)</literal>).
<literal>IDx</literal> is a vector, length(IDx) = length(CVIDs)+1. <lit-
eral>Pid</literal> is a vector containing the concatenated list of #id of points of
each convex in <literal>CVIDs</literal>. Each entry of <literal>IDx</literal>
is the position of the corresponding convex point list in <literal>Pid</literal>.
Hence, for example, the list of #id of points of the second convex is
Pid(IDx(2):IDx(3)-1).

If <literal>CVIDs</literal> contains convex #id which do not exist in the mesh,
their point list will be empty.

50 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

{Pts, IDx} = gf_mesh_get(mesh M, 'pts from cvid'[, imat
CVIDs])

Search point listed in <literal>CVID</literal>.

Return <literal>Pts</literal> and <literal>IDx</literal>. If <lit-
eral>CVIDs</literal> is omitted, all the convexes will be considered (equiv-
alent to <literal>CVIDs = gf_mesh_get(mesh M, ‘max cvid’)</literal>).
<literal>IDx</literal> is a vector, length(IDx) = length(CVIDs)+1. <lit-
eral>Pts</literal> is a vector containing the concatenated list of points of each
convex in <literal>CVIDs</literal>. Each entry of <literal>IDx</literal> is the
position of the corresponding convex point list in <literal>Pts</literal>. Hence,
for example, the list of points of the second convex is Pts(:,IDx(2):IDx(3)-1).

If <literal>CVIDs</literal> contains convex #id which do not exist in the mesh,
their point list will be empty.

CVid = gf_mesh_get(mesh M, 'cvid')

Return the list of all convex #id.

Note that their numbering is not supposed to be contiguous from 1 to
gf_mesh_get(mesh M, ‘nbcvs’), especially if some points have been removed
from the mesh. You can use gf_mesh_set(mesh M, ‘optimize_structure’) to en-
force a contiguous numbering.

m = gf_mesh_get(mesh M, 'max pid')

Return the maximum #id of all points in the mesh (see ‘max cvid’).

m = gf_mesh_get(mesh M, 'max cvid')

Return the maximum #id of all convexes in the mesh (see ‘max pid’).

[E,C] = gf_mesh_get(mesh M, 'edges' [, CVLST][, 'merge'])

Return the list of edges of mesh M for the convexes listed in the row vector
CVLST. E is a 2 x nb_edges matrix containing point indices. If CVLST is omit-
ted, then the edges of all convexes are returned. If CVLST has two rows then the
first row is supposed to contain convex numbers, and the second face numbers,
of which the edges will be returned. If ‘merge’ is indicated, all common edges
of convexes are merged in a single edge. If the optional output argument C is
specified, it will contain the convex number associated with each edge.

[E,C] = gf_mesh_get(mesh M, 'curved edges', int N [, CVLST])

Return E and C. More sophisticated version of gf_mesh_get(mesh M, ‘edges’)
designed for curved elements. This one will return N (N>=2) points of the
(curved) edges. With N==2, this is equivalent to gf_mesh_get(mesh M, ‘edges’).
Since the points are no more always part of the mesh, their coordinates are re-
turned instead of points number, in the array E which is a [mesh_dim x 2 x
nb_edges] array. If the optional output argument C is specified, it will contain
the convex number associated with each edge.

PIDs = gf_mesh_get(mesh M, 'orphaned pid')

Return point #id which are not linked to a convex.

CVIDs = gf_mesh_get(mesh M, 'cvid from pid', ivec PIDs[,
bool share=False])

5.21. gf_mesh_get 51

Scilab Interface, Release 5.4.1

Return convex #ids related with the point #ids given in <literal>PIDs</literal>.

If <literal>share=False</literal>, search convex whose vertex #ids are in <lit-
eral>PIDs</literal>. If <literal>share=True</literal>, search convex #ids that
share the point #ids given in <literal>PIDs</literal>. <literal>CVIDs</literal>
is a vector (possibly empty).

CVFIDs = gf_mesh_get(mesh M, 'faces from pid', ivec PIDs)

Return the convex faces whose vertex #ids are in <literal>PIDs</literal>.

<literal>CVFIDs</literal> is a two-rows matrix, the first row lists convex #ids,
and the second lists face numbers (local number in the convex). For a convex face
to be returned, EACH of its points have to be listed in <literal>PIDs</literal>.

CVFIDs = gf_mesh_get(mesh M, 'outer faces'[, dim][, CVIDs])

Return the set of faces not shared by two elements.

The output <literal>CVFIDs</literal> is a two-rows matrix, the first row lists
convex #ids, and the second one lists face numbers (local number in the convex).
If <literal>dim</literal> is provided, the function is forced to detect faces of ele-
ments that have dimension <literal>dim</literal>, e.g. <literal>dim</literal>=2
will detect edges of surface elements, even if these belong to a 3D mesh.
If <literal>CVIDs</literal> is not given, all convexes are considered, and the
function basically returns the mesh boundary. If <literal>CVIDs</literal> is
given, it returns the boundary of the convex set whose #ids are listed in <lit-
eral>CVIDs</literal>.

CVFIDs = gf_mesh_get(mesh M, 'inner faces'[, CVIDs])

Return the set of faces shared at least by two elements in CVIDs. Each face is
represented only once and is arbitrarily chosen between the two neighbor ele-
ments.

CVFIDs = gf_mesh_get(mesh M, 'all faces'[, CVIDs])

Return the set of faces of the in CVIDs (in all the mesh if CVIDs is omitted).
Note that the face shared by two neighbor elements will be represented twice.

CVFIDs = gf_mesh_get(mesh M, 'outer faces with direction',
vec v, scalar angle[, dim][, CVIDs])

Return the set of faces not shared by two convexes and with a mean outward
vector lying within an angle <literal>angle</literal> (in radians) from vector
<literal>v</literal>.

The output <literal>CVFIDs</literal> is a two-rows matrix, the first row lists
convex #ids, and the second one lists face numbers (local number in the con-
vex). The argument <literal>dim</literal> works as in outer_faces(). If <lit-
eral>CVIDs</literal> is given, it returns portion of the boundary of the convex
set defined by the #ids listed in <literal>CVIDs</literal>.

CVFIDs = gf_mesh_get(mesh M, 'outer faces in box', vec pmin,
vec pmax[, dim][, CVIDs])

Return the set of faces not shared by two convexes and lying within the box
defined by the corner points <literal>pmin</literal> and <literal>pmax</literal>.

52 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

The output <literal>CVFIDs</literal> is a two-rows matrix, the first row lists
convex #ids, and the second one lists face numbers (local number in the con-
vex). The argument <literal>dim</literal> works as in outer_faces(). If <lit-
eral>CVIDs</literal> is given, it returns portion of the boundary of the convex
set defined by the #ids listed in <literal>CVIDs</literal>.

CVFIDs = gf_mesh_get(mesh M, 'outer faces in ball', vec
center, scalar radius[, dim][, CVIDs])

Return the set of faces not shared by two convexes and lying within the ball of
corresponding <literal>center</literal> and <literal>radius</literal>.

The output <literal>CVFIDs</literal> is a two-rows matrix, the first row lists
convex #ids, and the second one lists face numbers (local number in the con-
vex). The argument <literal>dim</literal> works as in outer_faces(). If <lit-
eral>CVIDs</literal> is given, it returns portion of the boundary of the convex
set defined by the #ids listed in <literal>CVIDs</literal>.

CVFIDs = gf_mesh_get(mesh M, 'adjacent face', int cvid, int
fid)

Return convex face of the neighbor element if it exists. If the convex have more
than one neighbor relatively to the face <literal></literal>f<literal></literal>
(think to bar elements in 3D for instance), return the first face found.

CVFIDs = gf_mesh_get(mesh M, 'faces from cvid'[, ivec
CVIDs][, 'merge'])

Return a list of convex faces from a list of convex #id.

<literal>CVFIDs</literal> is a two-rows matrix, the first row lists convex #ids,
and the second lists face numbers (local number in the convex). If <lit-
eral>CVIDs</literal> is not given, all convexes are considered. The optional ar-
gument ‘merge’ merges faces shared by the convex of <literal>CVIDs</literal>.

[mat T] = gf_mesh_get(mesh M, 'triangulated surface', int
Nrefine [,CVLIST])

[DEPRECATED FUNCTION! will be removed in a future release]

Similar function to gf_mesh_get(mesh M, ‘curved edges’) : split (if necessary,
i.e. if the geometric transformation if non-linear) each face into sub-triangles
and return their coordinates in T (see also gf_compute(‘eval on P1 tri mesh’))

N = gf_mesh_get(mesh M, 'normal of face', int cv, int f[,
int nfpt])

Return the normal vector of convex <literal>cv</literal>, face <lit-
eral>f</literal> at the <literal>nfpt</literal> point of the face.

If <literal>nfpt</literal> is not specified, then the normal is evaluated at each
geometrical node of the face.

N = gf_mesh_get(mesh M, 'normal of faces', imat CVFIDs)

Return matrix of (at face centers) the normal vectors of convexes.

<literal>CVFIDs</literal> is supposed a two-rows matrix, the first row lists con-
vex #ids, and the second lists face numbers (local number in the convex).

5.21. gf_mesh_get 53

Scilab Interface, Release 5.4.1

CVIDs = gf_mesh_get(mesh M, 'convexes in box', vec pmin, vec
pmax)

Return the set of convexes lying entirely within the box defined by the corner
points <literal>pmin</literal> and <literal>pmax</literal>.

The output <literal>CVIDs</literal> is a two-rows matrix, the first row lists con-
vex #ids, and the second one lists face numbers (local number in the convex). If
<literal>CVIDs</literal> is given, it returns portion of the boundary of the con-
vex set defined by the #ids listed in <literal>CVIDs</literal>.

Q = gf_mesh_get(mesh M, 'quality'[, ivec CVIDs])

Return an estimation of the quality of each convex (<latex
style=”text”><![CDATA[0 leq Q leq 1]]></latex>).

A = gf_mesh_get(mesh M, 'convex area'[, ivec CVIDs])

Return an estimate of the area of each convex.

A = gf_mesh_get(mesh M, 'convex radius'[, ivec CVIDs])

Return an estimate of the radius of each convex.

{S, CV2S} = gf_mesh_get(mesh M, 'cvstruct'[, ivec CVIDs])

Return an array of the convex structures.

If <literal>CVIDs</literal> is not given, all convexes are considered. Each con-
vex structure is listed once in <literal>S</literal>, and <literal>CV2S</literal>
maps the convexes indice in <literal>CVIDs</literal> to the indice of its struc-
ture in <literal>S</literal>.

{GT, CV2GT} = gf_mesh_get(mesh M, 'geotrans'[, ivec CVIDs])

Returns an array of the geometric transformations.

See also gf_mesh_get(mesh M, ‘cvstruct’).

RIDs = gf_mesh_get(mesh M, 'boundaries')

DEPRECATED FUNCTION. Use ‘regions’ instead.

RIDs = gf_mesh_get(mesh M, 'regions')

Return the list of valid regions stored in the mesh.

RIDs = gf_mesh_get(mesh M, 'boundary')

DEPRECATED FUNCTION. Use ‘region’ instead.

CVFIDs = gf_mesh_get(mesh M, 'region', ivec RIDs)

Return the list of convexes/faces on the regions <literal>RIDs</literal>.

<literal>CVFIDs</literal> is a two-rows matrix, the first row lists convex #ids,
and the second lists face numbers (local number in the convex). (and 0 when the
whole convex is in the regions).

gf_mesh_get(mesh M, 'save', string filename)

Save the mesh object to an ascii file.

This mesh can be restored with gf_mesh(‘load’, filename).

54 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

s = gf_mesh_get(mesh M, 'char')

Output a string description of the mesh.

gf_mesh_get(mesh M, 'export to vtk', string filename, ...
[,'ascii'][,'quality'])

Exports a mesh to a VTK file .

If ‘quality’ is specified, an estimation of the quality of each convex will be writ-
ten to the file.

See also gf_mesh_fem_get(mesh_fem MF, ‘export to vtk’), gf_slice_get(slice S,
‘export to vtk’).

gf_mesh_get(mesh M, 'export to vtu', string filename, ...
[,'ascii'][,'quality'])

Exports a mesh to a VTK(XML) file .

If ‘quality’ is specified, an estimation of the quality of each convex will be writ-
ten to the file.

See also gf_mesh_fem_get(mesh_fem MF, ‘export to vtu’), gf_slice_get(slice S,
‘export to vtu’).

gf_mesh_get(mesh M, 'export to dx', string filename, ...
[,'ascii'][,'append'][,'as',string name,[,'serie',string
serie_name]][,'edges'])

Exports a mesh to an OpenDX file.

See also gf_mesh_fem_get(mesh_fem MF, ‘export to dx’), gf_slice_get(slice S,
‘export to dx’).

gf_mesh_get(mesh M, 'export to pos', string filename[,
string name])

Exports a mesh to a POS file .

See also gf_mesh_fem_get(mesh_fem MF, ‘export to pos’), gf_slice_get(slice S,
‘export to pos’).

z = gf_mesh_get(mesh M, 'memsize')

Return the amount of memory (in bytes) used by the mesh.

gf_mesh_get(mesh M, 'display')

displays a short summary for a mesh object.

5.22 gf_mesh_set

Synopsis

PIDs = gf_mesh_set(mesh M, 'pts', mat PTS)
PIDs = gf_mesh_set(mesh M, 'add point', mat PTS)
gf_mesh_set(mesh M, 'del point', ivec PIDs)
CVIDs = gf_mesh_set(mesh M, 'add convex', geotrans GT, mat PTS)

(continues on next page)

5.22. gf_mesh_set 55

Scilab Interface, Release 5.4.1

(continued from previous page)

gf_mesh_set(mesh M, 'del convex', mat CVIDs)
gf_mesh_set(mesh M, 'del convex of dim', ivec DIMs)
gf_mesh_set(mesh M, 'translate', vec V)
gf_mesh_set(mesh M, 'transform', mat T)
gf_mesh_set(mesh M, 'boundary', int rnum, mat CVFIDs)
gf_mesh_set(mesh M, 'region', int rnum, mat CVFIDs)
gf_mesh_set(mesh M, 'extend region', int rnum, mat CVFIDs)
gf_mesh_set(mesh M, 'region intersect', int r1, int r2)
gf_mesh_set(mesh M, 'region merge', int r1, int r2)
gf_mesh_set(mesh M, 'region subtract', int r1, int r2)
gf_mesh_set(mesh M, 'delete boundary', int rnum, mat CVFIDs)
gf_mesh_set(mesh M, 'delete region', ivec RIDs)
gf_mesh_set(mesh M, 'merge', mesh m2[, scalar tol])
gf_mesh_set(mesh M, 'optimize structure'[, int with_renumbering])
gf_mesh_set(mesh M, 'refine'[, ivec CVIDs])

Description :

General function for modification of a mesh object.

Command list :

PIDs = gf_mesh_set(mesh M, 'pts', mat PTS)

Replace the coordinates of the mesh points with those given in <lit-
eral>PTS</literal>.

PIDs = gf_mesh_set(mesh M, 'add point', mat PTS)

Insert new points in the mesh and return their #ids.

<literal>PTS</literal> should be an <literal></literal>nxm<literal></literal>
matrix , where <literal></literal>n<literal></literal> is the mesh dimension, and
<literal></literal>m<literal></literal> is the number of points that will be added
to the mesh. On output, <literal>PIDs</literal> contains the point #ids of these
new points.

Remark: if some points are already part of the mesh (with a small tolerance of
approximately <literal></literal>1e-8<literal></literal>), they won’t be inserted
again, and <literal>PIDs</literal> will contain the previously assigned #ids of
these points.

gf_mesh_set(mesh M, 'del point', ivec PIDs)

Removes one or more points from the mesh.

<literal>PIDs</literal> should contain the point #ids, such as the one returned
by the ‘add point’ command.

CVIDs = gf_mesh_set(mesh M, 'add convex', geotrans GT, mat
PTS)

Add a new convex into the mesh.

The convex structure (triangle, prism,. . .) is given by <literal>GT</literal> (ob-
tained with gf_geotrans(‘. . . ’)), and its points are given by the columns of <lit-
eral>PTS</literal>. On return, <literal>CVIDs</literal> contains the convex
#ids. <literal>PTS</literal> might be a 3-dimensional array in order to insert

56 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

more than one convex (or a two dimensional array correctly shaped according to
Fortran ordering).

gf_mesh_set(mesh M, 'del convex', mat CVIDs)

Remove one or more convexes from the mesh.

<literal>CVIDs</literal> should contain the convexes #ids, such as the ones re-
turned by the ‘add convex’ command.

gf_mesh_set(mesh M, 'del convex of dim', ivec DIMs)

Remove all convexes of dimension listed in <literal>DIMs</literal>.

For example; <literal></literal>gf_mesh_set(mesh M, ‘del convex of dim’,
[1,2])<literal></literal> remove all line segments, triangles and quadrangles.

gf_mesh_set(mesh M, 'translate', vec V)

Translates each point of the mesh from <literal>V</literal>.

gf_mesh_set(mesh M, 'transform', mat T)

Applies the matrix <literal>T</literal> to each point of the mesh.

Note that <literal>T</literal> is not required to be a <lit-
eral></literal>NxN<literal></literal> matrix (with <literal></literal>N =
gf_mesh_get(mesh M, ‘dim’)<literal></literal>). Hence it is possible to
transform a 2D mesh into a 3D one (and reciprocally).

gf_mesh_set(mesh M, 'boundary', int rnum, mat CVFIDs)

DEPRECATED FUNCTION. Use ‘region’ instead.

gf_mesh_set(mesh M, 'region', int rnum, mat CVFIDs)

Assigns the region number <literal>rnum</literal> to the set of convexes or/and
convex faces provided in the matrix <literal>CVFIDs</literal>.

The first row of <literal>CVFIDs</literal> contains convex #ids, and the second
row contains a face number in the convex (or 0 for the whole convex (regions are
usually used to store a list of convex faces, but you may also use them to store a
list of convexes).

If a vector is provided (or a one row matrix) the region will represent the corre-
sponding set of convex.

gf_mesh_set(mesh M, 'extend region', int rnum, mat CVFIDs)

Extends the region identified by the region number <literal>rnum</literal> to
include the set of convexes or/and convex faces provided in the matrix <lit-
eral>CVFIDs</literal>, see also <literal></literal>gf_mesh_set(mesh M, ‘set re-
gion)<literal></literal>.

gf_mesh_set(mesh M, 'region intersect', int r1, int r2)

Replace the region number <literal>r1</literal> with its intersection with region
number <literal>r2</literal>.

gf_mesh_set(mesh M, 'region merge', int r1, int r2)

Merge region number <literal>r2</literal> into region number <lit-
eral>r1</literal>.

5.22. gf_mesh_set 57

Scilab Interface, Release 5.4.1

gf_mesh_set(mesh M, 'region subtract', int r1, int r2)

Replace the region number <literal>r1</literal> with its difference with region
number <literal>r2</literal>.

gf_mesh_set(mesh M, 'delete boundary', int rnum, mat CVFIDs)

DEPRECATED FUNCTION. Use ‘delete region’ instead.

gf_mesh_set(mesh M, 'delete region', ivec RIDs)

Remove the regions whose #ids are listed in <literal>RIDs</literal>

gf_mesh_set(mesh M, 'merge', mesh m2[, scalar tol])

Merge with the mesh <literal>m2</literal>.

Overlapping points, within a tolerance radius <literal>tol</literal>, will not be
duplicated. If <literal>m2</literal> is a mesh_fem object, its linked mesh will
be used.

gf_mesh_set(mesh M, 'optimize structure'[, int
with_renumbering])

Reset point and convex numbering.

After optimisation, the points (resp. convexes) will be consecutively numbered
from 1 to gf_mesh_get(mesh M, ‘max pid’) (resp. gf_mesh_get(mesh M, ‘max
cvid’)).

gf_mesh_set(mesh M, 'refine'[, ivec CVIDs])

Use a Bank strategy for mesh refinement.

If <literal>CVIDs</literal> is not given, the whole mesh is refined. Note that the
regions, and the finite element methods and integration methods of the mesh_fem
and mesh_im objects linked to this mesh will be automagically refined.

5.23 gf_mesh_fem

Synopsis

MF = gf_mesh_fem(mesh m[, int Qdim1=1[, int Qdim2=1, ...]])
MF = gf_mesh_fem('load', string fname[, mesh m])
MF = gf_mesh_fem('from string', string s[, mesh m])
MF = gf_mesh_fem('clone', mesh_fem mf)
MF = gf_mesh_fem('sum', mesh_fem mf1, mesh_fem mf2[, mesh_fem mf3[, ...]])
MF = gf_mesh_fem('product', mesh_fem mf1, mesh_fem mf2)
MF = gf_mesh_fem('levelset', mesh_levelset mls, mesh_fem mf)
MF = gf_mesh_fem('global function', mesh m, levelset ls, {global_function
→˓GF1,...}[, int Qdim_m])
MF = gf_mesh_fem('partial', mesh_fem mf, ivec DOFs[, ivec RCVs])

Description :

General constructor for mesh_fem objects.

This object represents a finite element method defined on a whole mesh.

Command list :

58 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

MF = gf_mesh_fem(mesh m[, int Qdim1=1[, int Qdim2=1, ...]])

Build a new mesh_fem object.

The <literal>Qdim</literal> parameters specifies the dimension of the field rep-
resented by the finite element method. Qdim1 = 1 for a scalar field, Qdim1 = n
for a vector field off size n, Qdim1=m, Qdim2=n for a matrix field of size mxn
. . . Returns the handle of the created object.

MF = gf_mesh_fem('load', string fname[, mesh m])

Load a mesh_fem from a file.

If the mesh <literal>m</literal> is not supplied (this kind of file does not store
the mesh), then it is read from the file <literal>fname</literal> and its descriptor
is returned as the second output argument.

MF = gf_mesh_fem('from string', string s[, mesh m])

Create a mesh_fem object from its string description.

See also <literal></literal>gf_mesh_fem_get(mesh_fem MF,
‘char’)<literal></literal>

MF = gf_mesh_fem('clone', mesh_fem mf)

Create a copy of a mesh_fem.

MF = gf_mesh_fem('sum', mesh_fem mf1, mesh_fem mf2[,
mesh_fem mf3[, ...]])

Create a mesh_fem that spans two (or more) mesh_fem’s.

All mesh_fem must share the same mesh.

After that, you should not modify the FEM of <literal>mf1</literal>, <lit-
eral>mf2</literal> etc.

MF = gf_mesh_fem('product', mesh_fem mf1, mesh_fem mf2)

Create a mesh_fem that spans all the product of a selection of shape functions of
<literal>mf1</literal> by all shape functions of <literal>mf2</literal>. Designed
for Xfem enrichment.

<literal>mf1</literal> and <literal>mf2</literal> must share the same mesh.

After that, you should not modify the FEM of <literal>mf1</literal>, <lit-
eral>mf2</literal>.

MF = gf_mesh_fem('levelset', mesh_levelset mls, mesh_fem mf)

Create a mesh_fem that is conformal to implicit surfaces defined in
mesh_levelset.

MF = gf_mesh_fem('global function', mesh m, levelset ls,
{global_function GF1,...}[, int Qdim_m])

Create a mesh_fem whose base functions are global function given by the user in
the system of coordinate defined by the iso-values of the two level-set function
of <literal>ls</literal>.

MF = gf_mesh_fem('partial', mesh_fem mf, ivec DOFs[, ivec
RCVs])

5.23. gf_mesh_fem 59

Scilab Interface, Release 5.4.1

Build a restricted mesh_fem by keeping only a subset of the degrees of freedom
of <literal>mf</literal>.

If <literal>RCVs</literal> is given, no FEM will be put on the convexes listed
in <literal>RCVs</literal>.

5.24 gf_mesh_fem_get

Synopsis

n = gf_mesh_fem_get(mesh_fem MF, 'nbdof')
n = gf_mesh_fem_get(mesh_fem MF, 'nb basic dof')
DOF = gf_mesh_fem_get(mesh_fem MF, 'dof from cv',mat CVids)
DOF = gf_mesh_fem_get(mesh_fem MF, 'basic dof from cv',mat CVids)
{DOFs, IDx} = gf_mesh_fem_get(mesh_fem MF, 'dof from cvid'[, mat CVids])
{DOFs, IDx} = gf_mesh_fem_get(mesh_fem MF, 'basic dof from cvid'[, mat
→˓CVids])
gf_mesh_fem_get(mesh_fem MF, 'non conformal dof'[, mat CVids])
gf_mesh_fem_get(mesh_fem MF, 'non conformal basic dof'[, mat CVids])
gf_mesh_fem_get(mesh_fem MF, 'qdim')
{FEMs, CV2F} = gf_mesh_fem_get(mesh_fem MF, 'fem'[, mat CVids])
CVs = gf_mesh_fem_get(mesh_fem MF, 'convex_index')
bB = gf_mesh_fem_get(mesh_fem MF, 'is_lagrangian'[, mat CVids])
bB = gf_mesh_fem_get(mesh_fem MF, 'is_equivalent'[, mat CVids])
bB = gf_mesh_fem_get(mesh_fem MF, 'is_polynomial'[, mat CVids])
bB = gf_mesh_fem_get(mesh_fem MF, 'is_reduced')
bB = gf_mesh_fem_get(mesh_fem MF, 'reduction matrix')
bB = gf_mesh_fem_get(mesh_fem MF, 'extension matrix')
Vr = gf_mesh_fem_get(mesh_fem MF, 'reduce vector', vec V)
Ve = gf_mesh_fem_get(mesh_fem MF, 'extend vector', vec V)
DOFs = gf_mesh_fem_get(mesh_fem MF, 'basic dof on region',mat Rs)
DOFs = gf_mesh_fem_get(mesh_fem MF, 'dof on region',mat Rs)
DOFpts = gf_mesh_fem_get(mesh_fem MF, 'dof nodes'[, mat DOFids])
DOFpts = gf_mesh_fem_get(mesh_fem MF, 'basic dof nodes'[, mat DOFids])
DOFP = gf_mesh_fem_get(mesh_fem MF, 'dof partition')
gf_mesh_fem_get(mesh_fem MF, 'save',string filename[, string opt])
gf_mesh_fem_get(mesh_fem MF, 'char'[, string opt])
gf_mesh_fem_get(mesh_fem MF, 'display')
m = gf_mesh_fem_get(mesh_fem MF, 'linked mesh')
m = gf_mesh_fem_get(mesh_fem MF, 'mesh')
gf_mesh_fem_get(mesh_fem MF, 'export to vtk',string filename, ... ['ascii
→˓'], U, 'name'...)
gf_mesh_fem_get(mesh_fem MF, 'export to vtu',string filename, ... ['ascii
→˓'], U, 'name'...)
gf_mesh_fem_get(mesh_fem MF, 'export to dx',string filename, ...['as',
→˓string mesh_name][,'edges']['serie',string serie_name][,'ascii'][,'append
→˓'], U, 'name'...)
gf_mesh_fem_get(mesh_fem MF, 'export to pos',string filename[, string
→˓name][[,mesh_fem mf1], mat U1, string nameU1[[,mesh_fem mf2], mat U2,
→˓string nameU2,...]])
gf_mesh_fem_get(mesh_fem MF, 'dof_from_im',mesh_im mim[, int p])
U = gf_mesh_fem_get(mesh_fem MF, 'interpolate_convex_data',mat Ucv)
z = gf_mesh_fem_get(mesh_fem MF, 'memsize')
gf_mesh_fem_get(mesh_fem MF, 'has_linked_mesh_levelset')
gf_mesh_fem_get(mesh_fem MF, 'linked_mesh_levelset')

60 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Description :

General function for inquiry about mesh_fem objects.

Command list :

n = gf_mesh_fem_get(mesh_fem MF, 'nbdof')

Return the number of degrees of freedom (dof) of the mesh_fem.

n = gf_mesh_fem_get(mesh_fem MF, 'nb basic dof')

Return the number of basic degrees of freedom (dof) of the mesh_fem.

DOF = gf_mesh_fem_get(mesh_fem MF, 'dof from cv',mat CVids)

Deprecated function. Use gf_mesh_fem_get(mesh_fem MF, ‘basic dof from cv’)
instead.

DOF = gf_mesh_fem_get(mesh_fem MF, 'basic dof from cv',mat
CVids)

Return the dof of the convexes listed in <literal>CVids</literal>.

WARNING: the Degree of Freedom might be returned in ANY order, do not use
this function in your assembly routines. Use ‘basic dof from cvid’ instead, if you
want to be able to map a convex number with its associated degrees of freedom.

One can also get the list of basic dof on a set on convex faces, by indicating on
the second row of <literal>CVids</literal> the faces numbers (with respect to
the convex number on the first row).

{DOFs, IDx} = gf_mesh_fem_get(mesh_fem MF, 'dof from cvid'[,
mat CVids])

Deprecated function. Use gf_mesh_fem_get(mesh_fem MF, ‘basic dof from
cvid’) instead.

{DOFs, IDx} = gf_mesh_fem_get(mesh_fem MF, 'basic dof from
cvid'[, mat CVids])

Return the degrees of freedom attached to each convex of the mesh.

If <literal>CVids</literal> is omitted, all the convexes will be considered (equiv-
alent to <literal>CVids = 1 . . . gf_mesh_get(mesh M, ‘max cvid’)</literal>).

<literal>IDx</literal> is a vector, <literal>length(IDx) =
length(CVids)+1</literal>. <literal>DOFs</literal> is a vector containing
the concatenated list of dof of each convex in <literal>CVids</literal>. Each
entry of <literal>IDx</literal> is the position of the corresponding convex point
list in <literal>DOFs</literal>. Hence, for example, the list of points of the
second convex is DOFs(IDx(2):IDx(3)-1).

If <literal>CVids</literal> contains convex #id which do not exist in the mesh,
their point list will be empty.

gf_mesh_fem_get(mesh_fem MF, 'non conformal dof'[, mat
CVids])

Deprecated function. Use gf_mesh_fem_get(mesh_fem MF, ‘non conformal ba-
sic dof’) instead.

5.24. gf_mesh_fem_get 61

Scilab Interface, Release 5.4.1

gf_mesh_fem_get(mesh_fem MF, 'non conformal basic dof'[, mat
CVids])

Return partially linked degrees of freedom.

Return the basic dof located on the border of a convex and which belong to only
one convex, except the ones which are located on the border of the mesh. For
example, if the convex ‘a’ and ‘b’ share a common face, ‘a’ has a P1 FEM, and
‘b’ has a P2 FEM, then the basic dof on the middle of the face will be returned by
this function (this can be useful when searching the interfaces between classical
FEM and hierarchical FEM).

gf_mesh_fem_get(mesh_fem MF, 'qdim')

Return the dimension Q of the field interpolated by the mesh_fem.

By default, Q=1 (scalar field). This has an impact on the dof numbering.

{FEMs, CV2F} = gf_mesh_fem_get(mesh_fem MF, 'fem'[, mat
CVids])

Return a list of FEM used by the mesh_fem.

<literal>FEMs</literal> is an array of all fem objects found in the convexes given
in <literal>CVids</literal>. If <literal>CV2F</literal> was supplied as an out-
put argument, it contains, for each convex listed in <literal>CVids</literal>, the
index of its correspounding FEM in <literal>FEMs</literal>.

Convexes which are not part of the mesh, or convexes which do not have any
FEM have their correspounding entry in <literal>CV2F</literal> set to -1.

CVs = gf_mesh_fem_get(mesh_fem MF, 'convex_index')

Return the list of convexes who have an FEM.

bB = gf_mesh_fem_get(mesh_fem MF, 'is_lagrangian'[, mat
CVids])

Test if the mesh_fem is Lagrangian.

Lagrangian means that each base function Phi[i] is such that Phi[i](P[j]) =
delta(i,j), where P[j] is the dof location of the jth base function, and delta(i,j)
= 1 if i==j, else 0.

If <literal>CVids</literal> is omitted, it returns 1 if all convexes in the mesh
are Lagrangian. If <literal>CVids</literal> is used, it returns the convex indices
(with respect to <literal>CVids</literal>) which are Lagrangian.

bB = gf_mesh_fem_get(mesh_fem MF, 'is_equivalent'[, mat
CVids])

Test if the mesh_fem is equivalent.

See gf_mesh_fem_get(mesh_fem MF, ‘is_lagrangian’)

bB = gf_mesh_fem_get(mesh_fem MF, 'is_polynomial'[, mat
CVids])

Test if all base functions are polynomials.

See gf_mesh_fem_get(mesh_fem MF, ‘is_lagrangian’)

62 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

bB = gf_mesh_fem_get(mesh_fem MF, 'is_reduced')

Return 1 if the optional reduction matrix is applied to the dofs.

bB = gf_mesh_fem_get(mesh_fem MF, 'reduction matrix')

Return the optional reduction matrix.

bB = gf_mesh_fem_get(mesh_fem MF, 'extension matrix')

Return the optional extension matrix.

Vr = gf_mesh_fem_get(mesh_fem MF, 'reduce vector', vec V)

Multiply the provided vector V with the extension matrix of the mesh_fem.

Ve = gf_mesh_fem_get(mesh_fem MF, 'extend vector', vec V)

Multiply the provided vector V with the reduction matrix of the mesh_fem.

DOFs = gf_mesh_fem_get(mesh_fem MF, 'basic dof on region',
mat Rs)

Return the list of basic dof (before the optional reduction) lying on one of the
mesh regions listed in <literal>Rs</literal>.

More precisely, this function returns the basic dof whose support is non-null on
one of regions whose #ids are listed in <literal>Rs</literal> (note that for bound-
ary regions, some dof nodes may not lie exactly on the boundary, for example
the dof of Pk(n,0) lies on the center of the convex, but the base function in not
null on the convex border).

DOFs = gf_mesh_fem_get(mesh_fem MF, 'dof on region',mat Rs)

Return the list of dof (after the optional reduction) lying on one of the mesh
regions listed in <literal>Rs</literal>.

More precisely, this function returns the basic dof whose support is non-null on
one of regions whose #ids are listed in <literal>Rs</literal> (note that for bound-
ary regions, some dof nodes may not lie exactly on the boundary, for example
the dof of Pk(n,0) lies on the center of the convex, but the base function in not
null on the convex border).

For a reduced mesh_fem a dof is lying on a region if its potential corresponding
shape function is nonzero on this region. The extension matrix is used to make
the correspondence between basic and reduced dofs.

DOFpts = gf_mesh_fem_get(mesh_fem MF, 'dof nodes'[, mat
DOFids])

Deprecated function. Use gf_mesh_fem_get(mesh_fem MF, ‘basic dof nodes’)
instead.

DOFpts = gf_mesh_fem_get(mesh_fem MF, 'basic dof nodes'[,
mat DOFids])

Get location of basic degrees of freedom.

Return the list of interpolation points for the specified dof #IDs in <lit-
eral>DOFids</literal> (if <literal>DOFids</literal> is omitted, all basic dof are
considered).

5.24. gf_mesh_fem_get 63

Scilab Interface, Release 5.4.1

DOFP = gf_mesh_fem_get(mesh_fem MF, 'dof partition')

Get the ‘dof_partition’ array.

Return the array which associates an integer (the partition number) to each con-
vex of the mesh_fem. By default, it is an all-zero array. The degrees of freedom
of each convex of the mesh_fem are connected only to the dof of neighboring
convexes which have the same partition number, hence it is possible to create
partially discontinuous mesh_fem very easily.

gf_mesh_fem_get(mesh_fem MF, 'save',string filename[, string
opt])

Save a mesh_fem in a text file (and optionally its linked mesh object if <lit-
eral>opt</literal> is the string ‘with_mesh’).

gf_mesh_fem_get(mesh_fem MF, 'char'[, string opt])

Output a string description of the mesh_fem.

By default, it does not include the description of the linked mesh object, except
if <literal>opt</literal> is ‘with_mesh’.

gf_mesh_fem_get(mesh_fem MF, 'display')

displays a short summary for a mesh_fem object.

m = gf_mesh_fem_get(mesh_fem MF, 'linked mesh')

Return a reference to the mesh object linked to <literal>mf</literal>.

m = gf_mesh_fem_get(mesh_fem MF, 'mesh')

Return a reference to the mesh object linked to <literal>mf</literal>. (identical
to gf_mesh_get(mesh M, ‘linked mesh’))

gf_mesh_fem_get(mesh_fem MF, 'export to vtk',string
filename, ... ['ascii'], U, 'name'...)

Export a mesh_fem and some fields to a vtk file.

The FEM and geometric transformations will be mapped to order 1 or 2 isopara-
metric Pk (or Qk) FEMs (as VTK does not handle higher order elements). If you
need to represent high-order FEMs or high-order geometric transformations, you
should consider gf_slice_get(slice S, ‘export to vtk’).

gf_mesh_fem_get(mesh_fem MF, 'export to vtu',string
filename, ... ['ascii'], U, 'name'...)

Export a mesh_fem and some fields to a vtu file.

The FEM and geometric transformations will be mapped to order 1 or 2 isopara-
metric Pk (or Qk) FEMs (as VTK(XML) does not handle higher order elements).
If you need to represent high-order FEMs or high-order geometric transforma-
tions, you should consider gf_slice_get(slice S, ‘export to vtu’).

gf_mesh_fem_get(mesh_fem MF, 'export to dx',string filename,
...['as', string mesh_name][,'edges']['serie',string
serie_name][,'ascii'][,'append'], U, 'name'...)

Export a mesh_fem and some fields to an OpenDX file.

64 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

This function will fail if the mesh_fem mixes different convex types (i.e. quads
and triangles), or if OpenDX does not handle a specific element type (i.e. prism
connections are not known by OpenDX).

The FEM will be mapped to order 1 Pk (or Qk) FEMs. If you need to represent
high-order FEMs or high-order geometric transformations, you should consider
gf_slice_get(slice S, ‘export to dx’).

gf_mesh_fem_get(mesh_fem MF, 'export to pos',string
filename[, string name][[,mesh_fem mf1], mat U1, string
nameU1[[,mesh_fem mf2], mat U2, string nameU2,...]])

Export a mesh_fem and some fields to a pos file.

The FEM and geometric transformations will be mapped to order 1 isoparametric
Pk (or Qk) FEMs (as GMSH does not handle higher order elements).

gf_mesh_fem_get(mesh_fem MF, 'dof_from_im',mesh_im mim[, int
p])

Return a selection of dof who contribute significantly to the mass-matrix that
would be computed with <literal>mf</literal> and the integration method <lit-
eral>mim</literal>.

<literal>p</literal> represents the dimension on what the integration method op-
erates (default <literal>p = mesh dimension</literal>).

IMPORTANT: you still have to set a valid integration method on the convexes
which are not crosses by the levelset!

U = gf_mesh_fem_get(mesh_fem MF, 'interpolate_convex_data',
mat Ucv)

Interpolate data given on each convex of the mesh to the mesh_fem dof. The
mesh_fem has to be lagrangian, and should be discontinuous (typically an
FEM_PK(N,0) or FEM_QK(N,0) should be used).

The last dimension of the input vector Ucv should have gf_mesh_get(mesh M,
‘max cvid’) elements.

Example of use: gf_mesh_fem_get(mesh_fem MF, ‘interpolate_convex_data’,
gf_mesh_get(mesh M, ‘quality’))

z = gf_mesh_fem_get(mesh_fem MF, 'memsize')

Return the amount of memory (in bytes) used by the mesh_fem object.

The result does not take into account the linked mesh object.

gf_mesh_fem_get(mesh_fem MF, 'has_linked_mesh_levelset')

Is a mesh_fem_level_set or not.

gf_mesh_fem_get(mesh_fem MF, 'linked_mesh_levelset')

if it is a mesh_fem_level_set gives the linked mesh_level_set.

5.24. gf_mesh_fem_get 65

Scilab Interface, Release 5.4.1

5.25 gf_mesh_fem_set

Synopsis

gf_mesh_fem_set(mesh_fem MF, 'fem', fem f[, ivec CVids])
gf_mesh_fem_set(mesh_fem MF, 'classical fem', int k[[, 'complete'], ivec
→˓CVids])
gf_mesh_fem_set(mesh_fem MF, 'classical discontinuous fem', int k[[,
→˓'complete'], @tscalar alpha[, ivec CVIDX]])
gf_mesh_fem_set(mesh_fem MF, 'qdim', int Q)
gf_mesh_fem_set(mesh_fem MF, 'reduction matrices', mat R, mat E)
gf_mesh_fem_set(mesh_fem MF, 'reduction', int s)
gf_mesh_fem_set(mesh_fem MF, 'reduce meshfem', mat RM)
gf_mesh_fem_set(mesh_fem MF, 'dof partition', ivec DOFP)
gf_mesh_fem_set(mesh_fem MF, 'set partial', ivec DOFs[, ivec RCVs])
gf_mesh_fem_set(mesh_fem MF, 'adapt')
gf_mesh_fem_set(mesh_fem MF, 'set enriched dofs', ivec DOFs)

Description :

General function for modifying mesh_fem objects.

Command list :

gf_mesh_fem_set(mesh_fem MF, 'fem', fem f[, ivec CVids])

Set the Finite Element Method.

Assign an FEM <literal>f</literal> to all convexes whose #ids are listed in <lit-
eral>CVids</literal>. If <literal>CVids</literal> is not given, the integration is
assigned to all convexes.

See the help of gf_fem to obtain a list of available FEM methods.

gf_mesh_fem_set(mesh_fem MF, 'classical fem', int k[[,
'complete'], ivec CVids])

Assign a classical (Lagrange polynomial) fem of order <literal>k</literal> to
the mesh_fem. The option ‘complete’ requests complete Langrange polynomial
elements, even if the element geometric transformation is an incomplete one (e.g.
8-node quadrilateral or 20-node hexahedral).

Uses FEM_PK for simplexes, FEM_QK for parallelepipeds etc.

gf_mesh_fem_set(mesh_fem MF, 'classical discontinuous fem',
int k[[, 'complete'], @tscalar alpha[, ivec CVIDX]])

Assigns a classical (Lagrange polynomial) discontinuous fem of order k.

Similar to gf_mesh_fem_set(mesh_fem MF, ‘set classical fem’) except that
FEM_PK_DISCONTINUOUS is used. Param <literal>alpha</literal> the node
inset, <latex style=”text”><![CDATA[0 leq alpha < 1]]></latex>, where 0 im-
plies usual dof nodes, greater values move the nodes toward the center of gravity,
and 1 means that all degrees of freedom collapse on the center of gravity. The
option ‘complete’ requests complete Langrange polynomial elements, even if the
element geometric transformation is an incomplete one (e.g. 8-node quadrilat-
eral or 20-node hexahedral).

gf_mesh_fem_set(mesh_fem MF, 'qdim', int Q)

66 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Change the <literal>Q</literal> dimension of the field that is interpolated by the
mesh_fem.

<literal>Q = 1</literal> means that the mesh_fem describes a scalar field, <lit-
eral>Q = N</literal> means that the mesh_fem describes a vector field of dimen-
sion N.

gf_mesh_fem_set(mesh_fem MF, 'reduction matrices', mat R,
mat E)

Set the reduction and extension matrices and valid their use.

gf_mesh_fem_set(mesh_fem MF, 'reduction', int s)

Set or unset the use of the reduction/extension matrices.

gf_mesh_fem_set(mesh_fem MF, 'reduce meshfem', mat RM)

Set reduction mesh fem This function selects the degrees of freedom of the finite
element method by selecting a set of independent vectors of the matrix RM.
The numer of columns of RM should corresponds to the number of degrees of
freedom of the finite element method.

gf_mesh_fem_set(mesh_fem MF, 'dof partition', ivec DOFP)

Change the ‘dof_partition’ array.

<literal>DOFP</literal> is a vector holding a integer value for each convex of
the mesh_fem. See gf_mesh_fem_get(mesh_fem MF, ‘dof partition’) for a de-
scription of “dof partition”.

gf_mesh_fem_set(mesh_fem MF, 'set partial', ivec DOFs[, ivec
RCVs])

Can only be applied to a partial mesh_fem. Change the subset of the degrees of
freedom of <literal>mf</literal>.

If <literal>RCVs</literal> is given, no FEM will be put on the convexes listed
in <literal>RCVs</literal>.

gf_mesh_fem_set(mesh_fem MF, 'adapt')

For a mesh_fem levelset object only. Adapt the mesh_fem object to a change of
the levelset function.

gf_mesh_fem_set(mesh_fem MF, 'set enriched dofs', ivec DOFs)

For a mesh_fem product object only. Set te enriched dofs and adapt the
mesh_fem product.

5.26 gf_mesh_im

Synopsis

MIM = gf_mesh_im('load', string fname[, mesh m])
MIM = gf_mesh_im('from string', string s[, mesh m])
MIM = gf_mesh_im('clone', mesh_im mim)

(continues on next page)

5.26. gf_mesh_im 67

Scilab Interface, Release 5.4.1

(continued from previous page)

MIM = gf_mesh_im('levelset', mesh_levelset mls, string where, integ im[,
→˓integ im_tip[, integ im_set]])
MIM = gf_mesh_im(mesh m, [{integ im|int im_degree}])

Description :

General constructor for mesh_im objects.

This object represents an integration method defined on a whole mesh (an potentially on its
boundaries).

Command list :

MIM = gf_mesh_im('load', string fname[, mesh m])

Load a mesh_im from a file.

If the mesh <literal>m</literal> is not supplied (this kind of file does not store
the mesh), then it is read from the file and its descriptor is returned as the second
output argument.

MIM = gf_mesh_im('from string', string s[, mesh m])

Create a mesh_im object from its string description.

See also <literal></literal>gf_mesh_im_get(mesh_im MI,
‘char’)<literal></literal>

MIM = gf_mesh_im('clone', mesh_im mim)

Create a copy of a mesh_im.

MIM = gf_mesh_im('levelset', mesh_levelset mls, string
where, integ im[, integ im_tip[, integ im_set]])

Build an integration method conformal to a partition defined implicitly by a lev-
elset.

The <literal>where</literal> argument define the domain of integration with re-
spect to the levelset, it has to be chosen among ‘ALL’, ‘INSIDE’, ‘OUTSIDE’
and ‘BOUNDARY’.

it can be completed by a string defining the boolean operation to define the inte-
gration domain when there is more than one levelset.

the syntax is very simple, for example if there are 3 different levelset,

“a*b*c” is the intersection of the domains defined by each levelset (this
is the default behaviour if this function is not called).

“a+b+c” is the union of their domains.

“c-(a+b)” is the domain of the third levelset minus the union of the
domains of the two others.

“!a” is the complementary of the domain of a (i.e. it is the domain
where a(x)>0)

The first levelset is always referred to with “a”, the second with “b”,
and so on.

68 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

for intance INSIDE(a*b*c)

CAUTION: this integration method will be defined only on the element cut by
the level-set. For the ‘ALL’, ‘INSIDE’ and ‘OUTSIDE’ options it is manda-
tory to use the method <literal></literal>gf_mesh_im_set(mesh_im MI, ‘in-
teg’)<literal></literal> to define the integration method on the remaining ele-
ments.

MIM = gf_mesh_im(mesh m, [{integ im|int im_degree}])

Build a new mesh_im object.

For convenience, optional arguments (<literal>im</literal> or <lit-
eral>im_degree</literal>) can be provided, in that case a call to <lit-
eral></literal>gf_mesh_im_get(mesh_im MI, ‘integ’)<literal></literal> is
issued with these arguments.

5.27 gf_mesh_im_get

Synopsis

{I, CV2I} = gf_mesh_im_get(mesh_im MI, 'integ'[, mat CVids])
CVids = gf_mesh_im_get(mesh_im MI, 'convex_index')
M = gf_mesh_im_get(mesh_im MI, 'eltm', eltm em, int cv [, int f])
Ip = gf_mesh_im_get(mesh_im MI, 'im_nodes'[, mat CVids])
gf_mesh_im_get(mesh_im MI, 'save',string filename[, 'with mesh'])
gf_mesh_im_get(mesh_im MI, 'char'[,'with mesh'])
gf_mesh_im_get(mesh_im MI, 'display')
m = gf_mesh_im_get(mesh_im MI, 'linked mesh')
z = gf_mesh_im_get(mesh_im MI, 'memsize')

Description :

General function extracting information from mesh_im objects.

Command list :

{I, CV2I} = gf_mesh_im_get(mesh_im MI, 'integ'[, mat CVids])

Return a list of integration methods used by the mesh_im.

<literal>I</literal> is an array of all integ objects found in the convexes given
in <literal>CVids</literal>. If <literal>CV2I</literal> was supplied as an out-
put argument, it contains, for each convex listed in <literal>CVids</literal>, the
index of its correspounding integration method in <literal>I</literal>.

Convexes which are not part of the mesh, or convexes which do not have any
integration method have their correspounding entry in <literal>CV2I</literal>
set to -1.

CVids = gf_mesh_im_get(mesh_im MI, 'convex_index')

Return the list of convexes who have a integration method.

Convexes who have the dummy IM_NONE method are not listed.

M = gf_mesh_im_get(mesh_im MI, 'eltm', eltm em, int cv [,
int f])

5.27. gf_mesh_im_get 69

Scilab Interface, Release 5.4.1

Return the elementary matrix (or tensor) integrated on the convex <lit-
eral>cv</literal>.

WARNING

Be sure that the fem used for the construction of <literal>em</literal> is compat-
ible with the fem assigned to element <literal>cv</literal> ! This is not checked
by the function ! If the argument <literal>f</literal> is given, then the elemen-
tary tensor is integrated on the face <literal>f</literal> of <literal>cv</literal>
instead of the whole convex.

Ip = gf_mesh_im_get(mesh_im MI, 'im_nodes'[, mat CVids])

Return the coordinates of the integration points, with their weights.

<literal>CVids</literal> may be a list of convexes, or a list of convex faces, such
as returned by gf_mesh_get(mesh M, ‘region’)

WARNING

Convexes which are not part of the mesh, or convexes which do not have an
approximate integration method do not have their corresponding entry (this has
no meaning for exact integration methods!).

gf_mesh_im_get(mesh_im MI, 'save',string filename[, 'with
mesh'])

Saves a mesh_im in a text file (and optionally its linked mesh object).

gf_mesh_im_get(mesh_im MI, 'char'[,'with mesh'])

Output a string description of the mesh_im.

By default, it does not include the description of the linked mesh object.

gf_mesh_im_get(mesh_im MI, 'display')

displays a short summary for a mesh_im object.

m = gf_mesh_im_get(mesh_im MI, 'linked mesh')

Returns a reference to the mesh object linked to <literal>mim</literal>.

z = gf_mesh_im_get(mesh_im MI, 'memsize')

Return the amount of memory (in bytes) used by the mesh_im object.

The result does not take into account the linked mesh object.

5.28 gf_mesh_im_set

Synopsis

gf_mesh_im_set(mesh_im MI, 'integ',{integ im|int im_degree}[, ivec CVids])
gf_mesh_im_set(mesh_im MI, 'adapt')

Description :

General function for modifying mesh_im objects

Command list :

70 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

gf_mesh_im_set(mesh_im MI, 'integ',{integ im|int
im_degree}[, ivec CVids])

Set the integration method.

Assign an integration method to all convexes whose #ids are listed in <lit-
eral>CVids</literal>. If <literal>CVids</literal> is not given, the integra-
tion is assigned to all convexes. It is possible to assign a specific integra-
tion method with an integration method handle <literal>im</literal> obtained
via gf_integ(‘IM_SOMETHING’), or to let getfem choose a suitable integra-
tion method with <literal>im_degree</literal> (choosen such that polynomials
of <latex style=”text”><![CDATA[text{degree} leq text{im_degree}]]></latex>
are exactly integrated. If <literal>im_degree=-1</literal>, then the dummy inte-
gration method IM_NONE will be used.)

gf_mesh_im_set(mesh_im MI, 'adapt')

For a mesh_im levelset object only. Adapt the integration methods to a change
of the levelset function.

5.29 gf_mesh_im_data

Synopsis

MIMD = gf_mesh_im_data(mesh_im mim, int region, ivec size)

Description :

General constructor for mesh_im_data objects.

This object represents data defined on a mesh_im object.

Command list :

MIMD = gf_mesh_im_data(mesh_im mim, int region, ivec size)

Build a new mesh_imd object linked to a mesh_im object. If <lit-
eral>region</literal> is provided, considered integration points are filtered in
this region. <literal>size</literal> is a vector of integers that specifies the di-
mensions of the stored data per integration point. If not given, the scalar stored
data are considered.

5.30 gf_mesh_im_data_get

Synopsis

gf_mesh_im_data_get(mesh_im_data MID, 'region')
gf_mesh_im_data_get(mesh_im_data MID, 'nbpts')
gf_mesh_im_data_get(mesh_im_data MID, 'nb tensor elements')
gf_mesh_im_data_get(mesh_im_data MID, 'tensor size')
gf_mesh_im_data_get(mesh_im_data MID, 'display')
m = gf_mesh_im_data_get(mesh_im_data MID, 'linked mesh')

Description :

5.29. gf_mesh_im_data 71

Scilab Interface, Release 5.4.1

General function extracting information from mesh_im_data objects.

Command list :

gf_mesh_im_data_get(mesh_im_data MID, 'region')

Output the region that the mesh_imd is restricted to.

gf_mesh_im_data_get(mesh_im_data MID, 'nbpts')

Output the number of integration points (filtered in the considered region).

gf_mesh_im_data_get(mesh_im_data MID, 'nb tensor elements')

Output the size of the stored data (per integration point).

gf_mesh_im_data_get(mesh_im_data MID, 'tensor size')

Output the dimensions of the stored data (per integration point).

gf_mesh_im_data_get(mesh_im_data MID, 'display')

displays a short summary for a mesh_imd object.

m = gf_mesh_im_data_get(mesh_im_data MID, 'linked mesh')

Returns a reference to the mesh object linked to <literal>mim</literal>.

5.31 gf_mesh_im_data_set

Synopsis

gf_mesh_im_data_set(mesh_im_data MID, 'region', int rnum)
gf_mesh_im_data_set(mesh_im_data MID, 'tensor size',)

Description :

General function for modifying mesh_im objects

Command list :

gf_mesh_im_data_set(mesh_im_data MID, 'region', int rnum)

Set the considered region to <literal>rnum</literal>.

gf_mesh_im_data_set(mesh_im_data MID, 'tensor size',)

Set the size of the data per integration point.

5.32 gf_mesh_levelset

Synopsis

MLS = gf_mesh_levelset(mesh m)

Description :

General constructor for mesh_levelset objects.

72 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

General constructor for mesh_levelset objects. The role of this object is to provide a mesh
cut by a certain number of level_set. This object is used to build conformal integration
method (object mim and enriched finite element methods (Xfem)).

Command list :

MLS = gf_mesh_levelset(mesh m)

Build a new mesh_levelset object from a mesh and returns its handle.

5.33 gf_mesh_levelset_get

Synopsis

M = gf_mesh_levelset_get(mesh_levelset MLS, 'cut_mesh')
LM = gf_mesh_levelset_get(mesh_levelset MLS, 'linked_mesh')
nbls = gf_mesh_levelset_get(mesh_levelset MLS, 'nb_ls')
LS = gf_mesh_levelset_get(mesh_levelset MLS, 'levelsets')
CVIDs = gf_mesh_levelset_get(mesh_levelset MLS, 'crack_tip_convexes')
SIZE = gf_mesh_levelset_get(mesh_levelset MLS, 'memsize')
s = gf_mesh_levelset_get(mesh_levelset MLS, 'char')
gf_mesh_levelset_get(mesh_levelset MLS, 'display')

Description :

General function for querying information about mesh_levelset objects.

Command list :

M = gf_mesh_levelset_get(mesh_levelset MLS, 'cut_mesh')

Return a mesh cut by the linked levelset’s.

LM = gf_mesh_levelset_get(mesh_levelset MLS, 'linked_mesh')

Return a reference to the linked mesh.

nbls = gf_mesh_levelset_get(mesh_levelset MLS, 'nb_ls')

Return the number of linked levelset’s.

LS = gf_mesh_levelset_get(mesh_levelset MLS, 'levelsets')

Return a list of references to the linked levelset’s.

CVIDs = gf_mesh_levelset_get(mesh_levelset MLS,
'crack_tip_convexes')

Return the list of convex #id’s of the linked mesh on which have a tip of any
linked levelset’s.

SIZE = gf_mesh_levelset_get(mesh_levelset MLS, 'memsize')

Return the amount of memory (in bytes) used by the mesh_levelset.

s = gf_mesh_levelset_get(mesh_levelset MLS, 'char')

Output a (unique) string representation of the mesh_levelsetn.

This can be used to perform comparisons between two different mesh_levelset
objects. This function is to be completed.

5.33. gf_mesh_levelset_get 73

Scilab Interface, Release 5.4.1

gf_mesh_levelset_get(mesh_levelset MLS, 'display')

displays a short summary for a mesh_levelset object.

5.34 gf_mesh_levelset_set

Synopsis

gf_mesh_levelset_set(mesh_levelset MLS, 'add', levelset ls)
gf_mesh_levelset_set(mesh_levelset MLS, 'sup', levelset ls)
gf_mesh_levelset_set(mesh_levelset MLS, 'adapt')

Description :

General function for modification of mesh_levelset objects.

Command list :

gf_mesh_levelset_set(mesh_levelset MLS, 'add', levelset ls)

Add a link to the levelset <literal>ls</literal>.

Only a reference is kept, no copy is done. In order to indicate that the linked
mesh is cut by a levelset one has to call this method, where <literal>ls</literal>
is an levelset object. An arbitrary number of levelset can be added.

WARNING

The mesh of <literal>ls</literal> and the linked mesh must be the same.

gf_mesh_levelset_set(mesh_levelset MLS, 'sup', levelset ls)

Remove a link to the levelset <literal>ls</literal>.

gf_mesh_levelset_set(mesh_levelset MLS, 'adapt')

Do all the work (cut the convexes with the levelsets).

To initialice the mesh_levelset object or to actualize it when the value of any
levelset function is modified, one has to call this method.

5.35 gf_mesher_object

Synopsis

MF = gf_mesher_object('ball', vec center, scalar radius)
MF = gf_mesher_object('half space', vec origin, vec normal_vector)
MF = gf_mesher_object('cylinder', vec origin, vec n, scalar length, scalar
→˓radius)
MF = gf_mesher_object('cone', vec origin, vec n, scalar length, scalar
→˓half_angle)
MF = gf_mesher_object('torus', scalar R, scalar r)
MF = gf_mesher_object('rectangle', vec rmin, vec rmax)
MF = gf_mesher_object('intersect', mesher_object object1 , mesher_object
→˓object2, ...)

(continues on next page)

74 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

MF = gf_mesher_object('union', mesher_object object1 , mesher_object
→˓object2, ...)
MF = gf_mesher_object('set minus', mesher_object object1 , mesher_object
→˓object2)

Description :

General constructor for mesher_object objects.

This object represents a geometric object to be meshed by the experimental meshing proce-
dure of Getfem.

Command list :

MF = gf_mesher_object('ball', vec center, scalar radius)

Represents a ball of corresponding center and radius.

MF = gf_mesher_object('half space', vec origin, vec
normal_vector)

Represents an half space delimited by the plane which contains the origin and
normal to <literal>normal_vector</literal>. The selected part is the part in the
direction of the normal vector. This allows to cut a geometry with a plane for
instance to build a polygon or a polyhedron.

MF = gf_mesher_object('cylinder', vec origin, vec n, scalar
length, scalar radius)

Represents a cylinder (in any dimension) of a certain radius whose axis is deter-
mined by the origin, a vector <literal>n</literal> and a certain length.

MF = gf_mesher_object('cone', vec origin, vec n, scalar
length, scalar half_angle)

Represents a cone (in any dimension) of a certain half-angle (in radians) whose
axis is determined by the origin, a vector <literal>n</literal> and a certain length.

MF = gf_mesher_object('torus', scalar R, scalar r)

Represents a torus in 3d of axis along the z axis with a great radius equal to <lit-
eral>R</literal> and small radius equal to <literal>r</literal>. For the moment,
the possibility to change the axis is not given.

MF = gf_mesher_object('rectangle', vec rmin, vec rmax)

Represents a rectangle (or parallelepiped in 3D) parallel to the axes.

MF = gf_mesher_object('intersect', mesher_object object1 ,
mesher_object object2, ...)

Intersection of several objects.

MF = gf_mesher_object('union', mesher_object object1 ,
mesher_object object2, ...)

Union of several objects.

MF = gf_mesher_object('set minus', mesher_object object1 ,
mesher_object object2)

5.35. gf_mesher_object 75

Scilab Interface, Release 5.4.1

Geometric object being object1 minus object2.

5.36 gf_mesher_object_get

Synopsis

s = gf_mesher_object_get(mesher_object MO, 'char')
gf_mesher_object_get(mesher_object MO, 'display')

Description :

General function for querying information about mesher_object objects.

Command list :

s = gf_mesher_object_get(mesher_object MO, 'char')

Output a (unique) string representation of the mesher_object.

This can be used to perform comparisons between two different mesher_object
objects. This function is to be completed.

gf_mesher_object_get(mesher_object MO, 'display')

displays a short summary for a mesher_object object.

5.37 gf_model

Synopsis

MD = gf_model('real')
MD = gf_model('complex')

Description :

General constructor for model objects.

model variables store the variables and the state data and the description of a model. This
includes the global tangent matrix, the right hand side and the constraints. There are two
kinds of models, the <literal>real</literal> and the <literal>complex</literal> models.

Command list :

MD = gf_model('real')

Build a model for real unknowns.

MD = gf_model('complex')

Build a model for complex unknowns.

5.38 gf_model_get

Synopsis

76 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

b = gf_model_get(model M, 'is_complex')
T = gf_model_get(model M, 'nbdof')
dt = gf_model_get(model M, 'get time step')
t = gf_model_get(model M, 'get time')
T = gf_model_get(model M, 'tangent_matrix')
gf_model_get(model M, 'rhs')
gf_model_get(model M, 'brick term rhs', int ind_brick[, int ind_term, int
→˓sym, int ind_iter])
z = gf_model_get(model M, 'memsize')
gf_model_get(model M, 'variable list')
gf_model_get(model M, 'brick list')
gf_model_get(model M, 'list residuals')
V = gf_model_get(model M, 'variable', string name)
V = gf_model_get(model M, 'interpolation', string expr, {mesh_fem mf |
→˓mesh_imd mimd | vec pts, mesh m}[, int region[, int extrapolation[, int
→˓rg_source]]])
V = gf_model_get(model M, 'local_projection', mesh_im mim, string expr,
→˓mesh_fem mf[, int region])
mf = gf_model_get(model M, 'mesh fem of variable', string name)
name = gf_model_get(model M, 'mult varname Dirichlet', int ind_brick)
I = gf_model_get(model M, 'interval of variable', string varname)
V = gf_model_get(model M, 'from variables')
gf_model_get(model M, 'assembly'[, string option])
{nbit, converged} = gf_model_get(model M, 'solve'[, ...])
gf_model_get(model M, 'test tangent matrix'[, scalar EPS[, int NB[, scalar
→˓scale]]])
gf_model_get(model M, 'test tangent matrix term', string varname1, string
→˓varname2[, scalar EPS[, int NB[, scalar scale]]])
expr = gf_model_get(model M, 'Neumann term', string varname, int region)
V = gf_model_get(model M, 'compute isotropic linearized Von Mises or Tresca
→˓', string varname, string dataname_lambda, string dataname_mu, mesh_fem
→˓mf_vm[, string version])
V = gf_model_get(model M, 'compute isotropic linearized Von Mises pstrain',
→˓ string varname, string data_E, string data_nu, mesh_fem mf_vm)
V = gf_model_get(model M, 'compute isotropic linearized Von Mises pstress',
→˓ string varname, string data_E, string data_nu, mesh_fem mf_vm)
V = gf_model_get(model M, 'compute Von Mises or Tresca', string varname,
→˓string lawname, string dataname, mesh_fem mf_vm[, string version])
V = gf_model_get(model M, 'compute finite strain elasticity Von Mises',
→˓string lawname, string varname, string params, mesh_fem mf_vm[, int
→˓region])
V = gf_model_get(model M, 'compute second Piola Kirchhoff tensor', string
→˓varname, string lawname, string dataname, mesh_fem mf_sigma)
gf_model_get(model M, 'elastoplasticity next iter', mesh_im mim, string
→˓varname, string previous_dep_name, string projname, string datalambda,
→˓string datamu, string datathreshold, string datasigma)
gf_model_get(model M, 'small strain elastoplasticity next iter', mesh_im
→˓mim, string lawname, string unknowns_type [, string varnames, ...] [,
→˓string params, ...] [, string theta = '1' [, string dt = 'timestep']] [,
→˓int region = -1])
V = gf_model_get(model M, 'small strain elastoplasticity Von Mises', mesh_
→˓im mim, mesh_fem mf_vm, string lawname, string unknowns_type [, string
→˓varnames, ...] [, string params, ...] [, string theta = '1' [, string dt
→˓= 'timestep']] [, int region])
V = gf_model_get(model M, 'compute elastoplasticity Von Mises or Tresca',
→˓string datasigma, mesh_fem mf_vm[, string version])
V = gf_model_get(model M, 'compute plastic part', mesh_im mim, mesh_fem mf_
→˓pl, string varname, string previous_dep_name, string projname, string
→˓datalambda, string datamu, string datathreshold, string datasigma)

(continues on next page)

5.38. gf_model_get 77

Scilab Interface, Release 5.4.1

(continued from previous page)

gf_model_get(model M, 'finite strain elastoplasticity next iter', mesh_im
→˓mim, string lawname, string unknowns_type, [, string varnames, ...] [,
→˓string params, ...] [, int region = -1])
V = gf_model_get(model M, 'compute finite strain elastoplasticity Von Mises
→˓', mesh_im mim, mesh_fem mf_vm, string lawname, string unknowns_type, [,
→˓string varnames, ...] [, string params, ...] [, int region = -1])
V = gf_model_get(model M, 'sliding data group name of large sliding
→˓contact brick', int indbrick)
V = gf_model_get(model M, 'displacement group name of large sliding
→˓contact brick', int indbrick)
V = gf_model_get(model M, 'transformation name of large sliding contact
→˓brick', int indbrick)
V = gf_model_get(model M, 'sliding data group name of Nitsche large
→˓sliding contact brick', int indbrick)
V = gf_model_get(model M, 'displacement group name of Nitsche large
→˓sliding contact brick', int indbrick)
V = gf_model_get(model M, 'transformation name of Nitsche large sliding
→˓contact brick', int indbrick)
M = gf_model_get(model M, 'matrix term', int ind_brick, int ind_term)
s = gf_model_get(model M, 'char')
gf_model_get(model M, 'display')

Description :

Get information from a model object.

Command list :

b = gf_model_get(model M, 'is_complex')

Return 0 is the model is real, 1 if it is complex.

T = gf_model_get(model M, 'nbdof')

Return the total number of degrees of freedom of the model.

dt = gf_model_get(model M, 'get time step')

Gives the value of the time step.

t = gf_model_get(model M, 'get time')

Give the value of the data <literal>t</literal> corresponding to the current time.

T = gf_model_get(model M, 'tangent_matrix')

Return the tangent matrix stored in the model .

gf_model_get(model M, 'rhs')

Return the right hand side of the tangent problem.

gf_model_get(model M, 'brick term rhs', int ind_brick[, int
ind_term, int sym, int ind_iter])

Gives the access to the part of the right hand side of a term of a particular non-
linear brick. Does not account of the eventual time dispatcher. An assembly
of the rhs has to be done first. <literal>ind_brick</literal> is the brick index.
<literal>ind_term</literal> is the index of the term inside the brick (default
value : 1). <literal>sym</literal> is to access to the second right hand side

78 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

of for symmetric terms acting on two different variables (default is 0). <lit-
eral>ind_iter</literal> is the iteration number when time dispatchers are used
(default is 1).

z = gf_model_get(model M, 'memsize')

Return a rough approximation of the amount of memory (in bytes) used by the
model.

gf_model_get(model M, 'variable list')

print to the output the list of variables and constants of the model.

gf_model_get(model M, 'brick list')

print to the output the list of bricks of the model.

gf_model_get(model M, 'list residuals')

print to the output the residuals corresponding to all terms included in the model.

V = gf_model_get(model M, 'variable', string name)

Gives the value of a variable or data.

V = gf_model_get(model M, 'interpolation', string expr,
{mesh_fem mf | mesh_imd mimd | vec pts, mesh m}[, int
region[, int extrapolation[, int rg_source]]])

Interpolate a certain expression with respect to the mesh_fem <lit-
eral>mf</literal> or the mesh_im_data <literal>mimd</literal> or the set of
points <literal>pts</literal> on mesh <literal>m</literal>. The expression has
to be valid according to the high-level generic assembly language possibly in-
cluding references to the variables and data of the model.

The options <literal>extrapolation</literal> and <literal>rg_source</literal> are
specific to interpolations with respect to a set of points <literal>pts</literal>.

V = gf_model_get(model M, 'local_projection', mesh_im mim,
string expr, mesh_fem mf[, int region])

Make an elementwise L2 projection of an expression with respect to the
mesh_fem <literal>mf</literal>. This mesh_fem has to be a discontinuous one.
The expression has to be valid according to the high-level generic assembly lan-
guage possibly including references to the variables and data of the model.

mf = gf_model_get(model M, 'mesh fem of variable', string
name)

Gives access to the <literal>mesh_fem</literal> of a variable or data.

name = gf_model_get(model M, 'mult varname Dirichlet', int
ind_brick)

Gives the name of the multiplier variable for a Dirichlet brick. If the brick is
not a Dirichlet condition with multiplier brick, this function has an undefined
behavior

I = gf_model_get(model M, 'interval of variable', string
varname)

5.38. gf_model_get 79

Scilab Interface, Release 5.4.1

Gives the interval of the variable <literal>varname</literal> in the linear system
of the model.

V = gf_model_get(model M, 'from variables')

Return the vector of all the degrees of freedom of the model consisting of the
concatenation of the variables of the model (useful to solve your problem with
you own solver).

gf_model_get(model M, 'assembly'[, string option])

Assembly of the tangent system taking into account the terms from all bricks.
<literal>option</literal>, if specified, should be ‘build_all’, ‘build_rhs’,
‘build_matrix’, ‘build_rhs_with_internal’, ‘build_matrix_condensed’,
‘build_all_condensed’. The default is to build the whole tangent linear
system (matrix and rhs). This function is useful to solve your problem with you
own solver.

{nbit, converged} = gf_model_get(model M, 'solve'[, ...])

Run the standard getfem solver.

Note that you should be able to use your own solver if you want (it is possible to
obtain the tangent matrix and its right hand side with the gf_model_get(model
M, ‘tangent matrix’) etc.).

Various options can be specified:

• ‘noisy’ or ‘very_noisy’ the solver will display some information showing
the progress (residual values etc.).

• ‘max_iter’, int NIT set the maximum iterations numbers.

• ‘max_res’, @float RES set the target residual value.

• ‘diverged_res’, @float RES set the threshold value of the residual beyond
which the iterative method is considered to diverge (default is 1e200).

• ‘lsolver’, string SOLVER_NAME select explicitely the solver used for
the linear systems (the default value is ‘auto’, which lets getfem choose
itself). Possible values are ‘superlu’, ‘mumps’ (if supported), ‘cg/ildlt’,
‘gmres/ilu’ and ‘gmres/ilut’.

• ‘lsearch’, string LINE_SEARCH_NAME select explicitely the line
search method used for the linear systems (the default value is ‘de-
fault’). Possible values are ‘simplest’, ‘systematic’, ‘quadratic’ or
‘basic’.

Return the number of iterations, if an iterative method is used.

Note that it is possible to disable some variables (see gf_model_set(model
M, ‘disable variable’)) in order to solve the problem only with respect to a
subset of variables (the disabled variables are then considered as data) for
instance to replace the global Newton strategy with a fixed point one.

gf_model_get(model M, 'test tangent matrix'[, scalar EPS[,
int NB[, scalar scale]]])

Test the consistency of the tangent matrix in some random positions and random
directions (useful to test newly created bricks). <literal>EPS</literal> is the

80 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

value of the small parameter for the finite difference computation of the deriva-
tive is the random direction (default is 1E-6). <literal>NN</literal> is the num-
ber of tests (default is 100). <literal>scale</literal> is a parameter for the random
position (default is 1, 0 is an acceptable value) around the current position. Each
dof of the random position is chosen in the range [current-scale, current+scale].

gf_model_get(model M, 'test tangent matrix term', string
varname1, string varname2[, scalar EPS[, int NB[, scalar
scale]]])

Test the consistency of a part of the tangent matrix in some random positions and
random directions (useful to test newly created bricks). The increment is only
made on variable <literal>varname2</literal> and tested on the part of the resid-
ual corresponding to <literal>varname1</literal>. This means that only the term
(<literal>varname1</literal>, <literal>varname2</literal>) of the tangent matrix
is tested. <literal>EPS</literal> is the value of the small parameter for the fi-
nite difference computation of the derivative is the random direction (default
is 1E-6). <literal>NN</literal> is the number of tests (default is 100). <lit-
eral>scale</literal> is a parameter for the random position (default is 1, 0 is an
acceptable value) around the current position. Each dof of the random position
is chosen in the range [current-scale, current+scale].

expr = gf_model_get(model M, 'Neumann term', string varname,
int region)

Gives the assembly string corresponding to the Neumann term of the fem
variable <literal>varname</literal> on <literal>region</literal>. It is de-
duced from the assembly string declared by the model bricks. <lit-
eral>region</literal> should be the index of a boundary region on the mesh
where <literal>varname</literal> is defined. Care to call this function only after
all the volumic bricks have been declared. Complains, if a brick omit to declare
an assembly string.

V = gf_model_get(model M, 'compute isotropic linearized Von
Mises or Tresca', string varname, string dataname_lambda,
string dataname_mu, mesh_fem mf_vm[, string version])

Compute the Von-Mises stress or the Tresca stress of a field (only valid
for isotropic linearized elasticity in 3D). <literal>version</literal> should be
‘Von_Mises’ or ‘Tresca’ (‘Von_Mises’ is the default). Parametrized by Lame
coefficients.

V = gf_model_get(model M, 'compute isotropic linearized
Von Mises pstrain', string varname, string data_E, string
data_nu, mesh_fem mf_vm)

Compute the Von-Mises stress of a displacement field for isotropic linearized
elasticity in 3D or in 2D with plane strain assumption. Parametrized by Young
modulus and Poisson ratio.

V = gf_model_get(model M, 'compute isotropic linearized
Von Mises pstress', string varname, string data_E, string
data_nu, mesh_fem mf_vm)

Compute the Von-Mises stress of a displacement field for isotropic linearized
elasticity in 3D or in 2D with plane stress assumption. Parametrized by Young

5.38. gf_model_get 81

Scilab Interface, Release 5.4.1

modulus and Poisson ratio.

V = gf_model_get(model M, 'compute Von Mises or Tresca',
string varname, string lawname, string dataname, mesh_fem
mf_vm[, string version])

Compute on <literal>mf_vm</literal> the Von-Mises stress or the Tresca stress
of a field for nonlinear elasticity in 3D. <literal>lawname</literal> is the con-
stitutive law which could be ‘SaintVenant Kirchhoff’, ‘Mooney Rivlin’, ‘neo
Hookean’ or ‘Ciarlet Geymonat’. <literal>dataname</literal> is a vector of pa-
rameters for the constitutive law. Its length depends on the law. It could be a short
vector of constant values or a vector field described on a finite element method
for variable coefficients. <literal>version</literal> should be ‘Von_Mises’ or
‘Tresca’ (‘Von_Mises’ is the default).

V = gf_model_get(model M, 'compute finite strain elasticity
Von Mises', string lawname, string varname, string params,
mesh_fem mf_vm[, int region])

Compute on <literal>mf_vm</literal> the Von-Mises stress of a field <lit-
eral>varname</literal> for nonlinear elasticity in 3D. <literal>lawname</literal>
is the constitutive law which should be a valid name. <literal>params</literal>
are the parameters law. It could be a short vector of constant values or may
depend on data or variables of the model. Uses the high-level generic assembly.

V = gf_model_get(model M, 'compute second Piola Kirchhoff
tensor', string varname, string lawname, string dataname,
mesh_fem mf_sigma)

Compute on <literal>mf_sigma</literal> the second Piola Kirchhoff stress ten-
sor of a field for nonlinear elasticity in 3D. <literal>lawname</literal> is the
constitutive law which could be ‘SaintVenant Kirchhoff’, ‘Mooney Rivlin’, ‘neo
Hookean’ or ‘Ciarlet Geymonat’. <literal>dataname</literal> is a vector of pa-
rameters for the constitutive law. Its length depends on the law. It could be a
short vector of constant values or a vector field described on a finite element
method for variable coefficients.

gf_model_get(model M, 'elastoplasticity next iter',
mesh_im mim, string varname, string previous_dep_name,
string projname, string datalambda, string datamu, string
datathreshold, string datasigma)

Used with the old (obsolete) elastoplasticity brick to pass from an iteration to the
next one. Compute and save the stress constraints sigma for the next iterations.
‘mim’ is the integration method to use for the computation. ‘varname’ is the
main variable of the problem. ‘previous_dep_name’ represents the displacement
at the previous time step. ‘projname’ is the type of projection to use. For the
moment it could only be ‘Von Mises’ or ‘VM’. ‘datalambda’ and ‘datamu’ are
the Lame coefficients of the material. ‘datasigma’ is a vector which will contain
the new stress constraints values.

gf_model_get(model M, 'small strain elastoplasticity next
iter', mesh_im mim, string lawname, string unknowns_type [,
string varnames, ...] [, string params, ...] [, string theta
= '1' [, string dt = 'timestep']] [, int region = -1])

82 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Function that allows to pass from a time step to another for the small strain
plastic brick. The parameters have to be exactly the same than the one of <lit-
eral>add_small_strain_elastoplasticity_brick</literal>, so see the documenta-
tion of this function for the explanations. Basically, this brick computes the plas-
tic strain and the plastic multiplier and stores them for the next step. Additionaly,
it copies the computed displacement to the data that stores the displacement of
the previous time step (typically ‘u’ to ‘Previous_u’). It has to be called before
any use of <literal>compute_small_strain_elastoplasticity_Von_Mises</literal>.

V = gf_model_get(model M, 'small strain elastoplasticity Von
Mises', mesh_im mim, mesh_fem mf_vm, string lawname, string
unknowns_type [, string varnames, ...] [, string params, ..
.] [, string theta = '1' [, string dt = 'timestep']] [, int
region])

This function computes the Von Mises stress field with respect to a small strain
elastoplasticity term, approximated on <literal>mf_vm</literal>, and stores the
result into <literal>VM</literal>. All other parameters have to be exactly
the same as for <literal>add_small_strain_elastoplasticity_brick</literal>. Re-
member that <literal>small_strain_elastoplasticity_next_iter</literal> has to be
called before any call of this function.

V = gf_model_get(model M, 'compute elastoplasticity Von
Mises or Tresca', string datasigma, mesh_fem mf_vm[, string
version])

Compute on <literal>mf_vm</literal> the Von-Mises or the Tresca stress of a
field for plasticity and return it into the vector V. <literal>datasigma</literal>
is a vector which contains the stress constraints values supported by the mesh.
<literal>version</literal> should be ‘Von_Mises’ or ‘Tresca’ (‘Von_Mises’ is the
default).

V = gf_model_get(model M, 'compute plastic part',
mesh_im mim, mesh_fem mf_pl, string varname, string
previous_dep_name, string projname, string datalambda,
string datamu, string datathreshold, string datasigma)

Compute on <literal>mf_pl</literal> the plastic part and return it into the vector
V. <literal>datasigma</literal> is a vector which contains the stress constraints
values supported by the mesh.

gf_model_get(model M, 'finite strain elastoplasticity next
iter', mesh_im mim, string lawname, string unknowns_type, [,
string varnames, ...] [, string params, ...] [, int region =
-1])

Function that allows to pass from a time step to another for the finite strain
plastic brick. The parameters have to be exactly the same than the one of
<literal>add_finite_strain_elastoplasticity_brick</literal>, so see the documen-
tation of this function for the explanations. Basically, this brick computes
the plastic strain and the plastic multiplier and stores them for the next step.
For the Simo-Miehe law which is currently the only one implemented, this
function updates the state variables defined in the last two entries of <lit-
eral>varnames</literal>, and resets the plastic multiplier field given as the sec-
ond entry of <literal>varnames</literal>.

5.38. gf_model_get 83

Scilab Interface, Release 5.4.1

V = gf_model_get(model M, 'compute finite strain
elastoplasticity Von Mises', mesh_im mim, mesh_fem mf_vm,
string lawname, string unknowns_type, [, string varnames,
...] [, string params, ...] [, int region = -1])

Compute on <literal>mf_vm</literal> the Von-Mises or the Tresca stress of a
field for plasticity and return it into the vector V. The first input parameters ar as
in the function ‘finite strain elastoplasticity next iter’.

V = gf_model_get(model M, 'sliding data group name of large
sliding contact brick', int indbrick)

Gives the name of the group of variables corresponding to the sliding data for an
existing large sliding contact brick.

V = gf_model_get(model M, 'displacement group name of large
sliding contact brick', int indbrick)

Gives the name of the group of variables corresponding to the sliding data for an
existing large sliding contact brick.

V = gf_model_get(model M, 'transformation name of large
sliding contact brick', int indbrick)

Gives the name of the group of variables corresponding to the sliding data for an
existing large sliding contact brick.

V = gf_model_get(model M, 'sliding data group name of
Nitsche large sliding contact brick', int indbrick)

Gives the name of the group of variables corresponding to the sliding data for an
existing large sliding contact brick.

V = gf_model_get(model M, 'displacement group name of
Nitsche large sliding contact brick', int indbrick)

Gives the name of the group of variables corresponding to the sliding data for an
existing large sliding contact brick.

V = gf_model_get(model M, 'transformation name of Nitsche
large sliding contact brick', int indbrick)

Gives the name of the group of variables corresponding to the sliding data for an
existing large sliding contact brick.

M = gf_model_get(model M, 'matrix term', int ind_brick, int
ind_term)

Gives the matrix term ind_term of the brick ind_brick if it exists

s = gf_model_get(model M, 'char')

Output a (unique) string representation of the model.

This can be used to perform comparisons between two different model objects.
This function is to be completed.

gf_model_get(model M, 'display')

displays a short summary for a model object.

84 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

5.39 gf_model_set

Synopsis

gf_model_set(model M, 'clear')
gf_model_set(model M, 'add fem variable', string name, mesh_fem mf)
gf_model_set(model M, 'add filtered fem variable', string name, mesh_fem
→˓mf, int region)
gf_model_set(model M, 'add im variable', string name, mesh_imd mimd)
gf_model_set(model M, 'add internal im variable', string name, mesh_imd
→˓mimd)
gf_model_set(model M, 'add variable', string name, sizes)
gf_model_set(model M, 'delete variable', string name)
gf_model_set(model M, 'resize variable', string name, sizes)
gf_model_set(model M, 'add multiplier', string name, mesh_fem mf, string
→˓primalname[, mesh_im mim, int region])
gf_model_set(model M, 'add im data', string name, mesh_imd mimd)
gf_model_set(model M, 'add fem data', string name, mesh_fem mf[, sizes])
gf_model_set(model M, 'add initialized fem data', string name, mesh_fem mf,
→˓ vec V[, sizes])
gf_model_set(model M, 'add data', string name, int size)
gf_model_set(model M, 'add macro', string name, string expr)
gf_model_set(model M, 'del macro', string name)
gf_model_set(model M, 'add initialized data', string name, vec V[, sizes])
gf_model_set(model M, 'variable', string name, vec V)
gf_model_set(model M, 'to variables', vec V)
gf_model_set(model M, 'delete brick', int ind_brick)
gf_model_set(model M, 'define variable group', string name[, string
→˓varname, ...])
gf_model_set(model M, 'add elementary rotated RT0 projection', string
→˓transname)
gf_model_set(model M, 'add elementary P0 projection', string transname)
gf_model_set(model M, 'add HHO reconstructed gradient', string transname)
gf_model_set(model M, 'add HHO reconstructed symmetrized gradient', string
→˓transname)
gf_model_set(model M, 'add HHO reconstructed value', string transname)
gf_model_set(model M, 'add HHO reconstructed symmetrized value', string
→˓transname)
gf_model_set(model M, 'add HHO stabilization', string transname)
gf_model_set(model M, 'add HHO symmetrized stabilization', string
→˓transname)
gf_model_set(model M, 'add interpolate transformation from expression',
→˓string transname, mesh source_mesh, mesh target_mesh, string expr)
gf_model_set(model M, 'add element extrapolation transformation', string
→˓transname, mesh source_mesh, mat elt_corr)
gf_model_set(model M, 'add standard secondary domain', string name, mesh_
→˓im mim, int region = -1)
gf_model_set(model M, 'set element extrapolation correspondence', string
→˓transname, mat elt_corr)
gf_model_set(model M, 'add raytracing transformation', string transname,
→˓scalar release_distance)
gf_model_set(model M, 'add master contact boundary to raytracing
→˓transformation', string transname, mesh m, string dispname, int region)
gf_model_set(model M, 'add slave contact boundary to raytracing
→˓transformation', string transname, mesh m, string dispname, int region)
gf_model_set(model M, 'add rigid obstacle to raytracing transformation',
→˓string transname, string expr, int N)

(continues on next page)

5.39. gf_model_set 85

Scilab Interface, Release 5.4.1

(continued from previous page)

gf_model_set(model M, 'add projection transformation', string transname,
→˓scalar release_distance)
gf_model_set(model M, 'add master contact boundary to projection
→˓transformation', string transname, mesh m, string dispname, int region)
gf_model_set(model M, 'add slave contact boundary to projection
→˓transformation', string transname, mesh m, string dispname, int region)
gf_model_set(model M, 'add rigid obstacle to projection transformation',
→˓string transname, string expr, int N)
ind = gf_model_set(model M, 'add linear term', mesh_im mim, string
→˓expression[, int region[, int is_symmetric[, int is_coercive]]])
ind = gf_model_set(model M, 'add linear twodomain term', mesh_im mim,
→˓string expression, int region, string secondary_domain[, int is_
→˓symmetric[, int is_coercive]])
ind = gf_model_set(model M, 'add linear generic assembly brick', mesh_im
→˓mim, string expression[, int region[, int is_symmetric[, int is_
→˓coercive]]])
ind = gf_model_set(model M, 'add nonlinear term', mesh_im mim, string
→˓expression[, int region[, int is_symmetric[, int is_coercive]]])
ind = gf_model_set(model M, 'add nonlinear twodomain term', mesh_im mim,
→˓string expression, int region, string secondary_domain[, int is_
→˓symmetric[, int is_coercive]])
ind = gf_model_set(model M, 'add nonlinear generic assembly brick', mesh_
→˓im mim, string expression[, int region[, int is_symmetric[, int is_
→˓coercive]]])
ind = gf_model_set(model M, 'add source term', mesh_im mim, string
→˓expression[, int region])
ind = gf_model_set(model M, 'add twodomain source term', mesh_im mim,
→˓string expression, int region, string secondary_domain)
ind = gf_model_set(model M, 'add source term generic assembly brick', mesh_
→˓im mim, string expression[, int region])
gf_model_set(model M, 'add assembly assignment', string dataname, string
→˓expression[, int region[, int order[, int before]]])
gf_model_set(model M, 'clear assembly assignment')
ind = gf_model_set(model M, 'add Laplacian brick', mesh_im mim, string
→˓varname[, int region])
ind = gf_model_set(model M, 'add generic elliptic brick', mesh_im mim,
→˓string varname, string dataname[, int region])
ind = gf_model_set(model M, 'add source term brick', mesh_im mim, string
→˓varname, string dataexpr[, int region[, string directdataname]])
ind = gf_model_set(model M, 'add normal source term brick', mesh_im mim,
→˓string varname, string dataname, int region)
ind = gf_model_set(model M, 'add Dirichlet condition with simplification',
→˓string varname, int region[, string dataname])
ind = gf_model_set(model M, 'add Dirichlet condition with multipliers',
→˓mesh_im mim, string varname, mult_description, int region[, string
→˓dataname])
ind = gf_model_set(model M, 'add Dirichlet condition with Nitsche method',
→˓mesh_im mim, string varname, string Neumannterm, string datagamma0, int
→˓region[, scalar theta][, string dataname])
ind = gf_model_set(model M, 'add Dirichlet condition with penalization',
→˓mesh_im mim, string varname, scalar coeff, int region[, string dataname,
→˓mesh_fem mf_mult])
ind = gf_model_set(model M, 'add normal Dirichlet condition with
→˓multipliers', mesh_im mim, string varname, mult_description, int region[,
→˓ string dataname])
ind = gf_model_set(model M, 'add normal Dirichlet condition with
→˓penalization', mesh_im mim, string varname, scalar coeff, int region[,
→˓string dataname, mesh_fem mf_mult])

(continues on next page)

86 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

ind = gf_model_set(model M, 'add normal Dirichlet condition with Nitsche
→˓method', mesh_im mim, string varname, string Neumannterm, string
→˓gamma0name, int region[, scalar theta][, string dataname])
ind = gf_model_set(model M, 'add generalized Dirichlet condition with
→˓multipliers', mesh_im mim, string varname, mult_description, int region,
→˓string dataname, string Hname)
ind = gf_model_set(model M, 'add generalized Dirichlet condition with
→˓penalization', mesh_im mim, string varname, scalar coeff, int region,
→˓string dataname, string Hname[, mesh_fem mf_mult])
ind = gf_model_set(model M, 'add generalized Dirichlet condition with
→˓Nitsche method', mesh_im mim, string varname, string Neumannterm, string
→˓gamma0name, int region[, scalar theta], string dataname, string Hname)
ind = gf_model_set(model M, 'add pointwise constraints with multipliers',
→˓string varname, string dataname_pt[, string dataname_unitv] [, string
→˓dataname_val])
ind = gf_model_set(model M, 'add pointwise constraints with given
→˓multipliers', string varname, string multname, string dataname_pt[,
→˓string dataname_unitv] [, string dataname_val])
ind = gf_model_set(model M, 'add pointwise constraints with penalization',
→˓string varname, scalar coeff, string dataname_pt[, string dataname_
→˓unitv] [, string dataname_val])
gf_model_set(model M, 'change penalization coeff', int ind_brick, scalar
→˓coeff)
ind = gf_model_set(model M, 'add Helmholtz brick', mesh_im mim, string
→˓varname, string dataexpr[, int region])
ind = gf_model_set(model M, 'add Fourier Robin brick', mesh_im mim, string
→˓varname, string dataexpr, int region)
ind = gf_model_set(model M, 'add constraint with multipliers', string
→˓varname, string multname, spmat B, {vec L | string dataname})
ind = gf_model_set(model M, 'add constraint with penalization', string
→˓varname, scalar coeff, spmat B, {vec L | string dataname})
ind = gf_model_set(model M, 'add explicit matrix', string varname1, string
→˓varname2, spmat B[, int issymmetric[, int iscoercive]])
ind = gf_model_set(model M, 'add explicit rhs', string varname, vec L)
gf_model_set(model M, 'set private matrix', int indbrick, spmat B)
gf_model_set(model M, 'set private rhs', int indbrick, vec B)
ind = gf_model_set(model M, 'add isotropic linearized elasticity brick',
→˓mesh_im mim, string varname, string dataname_lambda, string dataname_mu[,
→˓ int region])
ind = gf_model_set(model M, 'add isotropic linearized elasticity pstrain
→˓brick', mesh_im mim, string varname, string data_E, string data_nu[, int
→˓region])
ind = gf_model_set(model M, 'add isotropic linearized elasticity pstress
→˓brick', mesh_im mim, string varname, string data_E, string data_nu[, int
→˓region])
ind = gf_model_set(model M, 'add linear incompressibility brick', mesh_im
→˓mim, string varname, string multname_pressure[, int region[, string
→˓dataexpr_coeff]])
ind = gf_model_set(model M, 'add nonlinear elasticity brick', mesh_im mim,
→˓string varname, string constitutive_law, string dataname[, int region])
ind = gf_model_set(model M, 'add finite strain elasticity brick', mesh_im
→˓mim, string constitutive_law, string varname, string params[, int
→˓region])
ind = gf_model_set(model M, 'add small strain elastoplasticity brick',
→˓mesh_im mim, string lawname, string unknowns_type [, string varnames, ..
→˓.] [, string params, ...] [, string theta = '1' [, string dt = 'timestep
→˓']] [, int region = -1]) (continues on next page)

5.39. gf_model_set 87

Scilab Interface, Release 5.4.1

(continued from previous page)

ind = gf_model_set(model M, 'add elastoplasticity brick', mesh_im mim ,
→˓string projname, string varname, string previous_dep_name, string
→˓datalambda, string datamu, string datathreshold, string datasigma[, int
→˓region])
ind = gf_model_set(model M, 'add finite strain elastoplasticity brick',
→˓mesh_im mim , string lawname, string unknowns_type [, string varnames, ..
→˓.] [, string params, ...] [, int region = -1])
ind = gf_model_set(model M, 'add nonlinear incompressibility brick', mesh_
→˓im mim, string varname, string multname_pressure[, int region])
ind = gf_model_set(model M, 'add finite strain incompressibility brick',
→˓mesh_im mim, string varname, string multname_pressure[, int region])
ind = gf_model_set(model M, 'add bilaplacian brick', mesh_im mim, string
→˓varname, string dataname [, int region])
ind = gf_model_set(model M, 'add Kirchhoff-Love plate brick', mesh_im mim,
→˓string varname, string dataname_D, string dataname_nu [, int region])
ind = gf_model_set(model M, 'add normal derivative source term brick',
→˓mesh_im mim, string varname, string dataname, int region)
ind = gf_model_set(model M, 'add Kirchhoff-Love Neumann term brick', mesh_
→˓im mim, string varname, string dataname_M, string dataname_divM, int
→˓region)
ind = gf_model_set(model M, 'add normal derivative Dirichlet condition
→˓with multipliers', mesh_im mim, string varname, mult_description, int
→˓region [, string dataname, int R_must_be_derivated])
ind = gf_model_set(model M, 'add normal derivative Dirichlet condition
→˓with penalization', mesh_im mim, string varname, scalar coeff, int
→˓region [, string dataname, int R_must_be_derivated])
ind = gf_model_set(model M, 'add Mindlin Reissner plate brick', mesh_im
→˓mim, mesh_im mim_reduced, string varname_u3, string varname_theta ,
→˓string param_E, string param_nu, string param_epsilon, string param_
→˓kappa [,int variant [, int region]])
ind = gf_model_set(model M, 'add enriched Mindlin Reissner plate brick',
→˓mesh_im mim, mesh_im mim_reduced1, mesh_im mim_reduced2, string varname_
→˓ua, string varname_theta,string varname_u3, string varname_theta3 ,
→˓string param_E, string param_nu, string param_epsilon [,int variant [,
→˓int region]])
ind = gf_model_set(model M, 'add mass brick', mesh_im mim, string varname[,
→˓ string dataexpr_rho[, int region]])
ind = gf_model_set(model M, 'add lumped mass for first order brick', mesh_
→˓im mim, string varname[, string dataexpr_rho[, int region]])
gf_model_set(model M, 'shift variables for time integration')
gf_model_set(model M, 'perform init time derivative', scalar ddt)
gf_model_set(model M, 'set time step', scalar dt)
gf_model_set(model M, 'set time', scalar t)
gf_model_set(model M, 'add theta method for first order', string varname,
→˓scalar theta)
gf_model_set(model M, 'add theta method for second order', string varname,
→˓scalar theta)
gf_model_set(model M, 'add Newmark scheme', string varname, scalar beta,
→˓scalar gamma)
gf_model_set(model M, 'add_Houbolt_scheme', string varname)
gf_model_set(model M, 'disable bricks', ivec bricks_indices)
gf_model_set(model M, 'enable bricks', ivec bricks_indices)
gf_model_set(model M, 'disable variable', string varname)
gf_model_set(model M, 'enable variable', string varname)
gf_model_set(model M, 'first iter')
gf_model_set(model M, 'next iter')

(continues on next page)

88 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

(continued from previous page)

ind = gf_model_set(model M, 'add basic contact brick', string varname_u,
→˓string multname_n[, string multname_t], string dataname_r, spmat BN[,
→˓spmat BT, string dataname_friction_coeff][, string dataname_gap[, string
→˓dataname_alpha[, int augmented_version[, string dataname_gamma, string
→˓dataname_wt]]])
ind = gf_model_set(model M, 'add basic contact brick two deformable bodies
→˓', string varname_u1, string varname_u2, string multname_n, string
→˓dataname_r, spmat BN1, spmat BN2[, string dataname_gap[, string dataname_
→˓alpha[, int augmented_version]]])
gf_model_set(model M, 'contact brick set BN', int indbrick, spmat BN)
gf_model_set(model M, 'contact brick set BT', int indbrick, spmat BT)
ind = gf_model_set(model M, 'add nodal contact with rigid obstacle brick',
→˓ mesh_im mim, string varname_u, string multname_n[, string multname_t],
→˓string dataname_r[, string dataname_friction_coeff], int region, string
→˓obstacle[, int augmented_version])
ind = gf_model_set(model M, 'add contact with rigid obstacle brick', mesh_
→˓im mim, string varname_u, string multname_n[, string multname_t], string
→˓dataname_r[, string dataname_friction_coeff], int region, string
→˓obstacle[, int augmented_version])
ind = gf_model_set(model M, 'add integral contact with rigid obstacle brick
→˓', mesh_im mim, string varname_u, string multname, string dataname_
→˓obstacle, string dataname_r [, string dataname_friction_coeff], int
→˓region [, int option [, string dataname_alpha [, string dataname_wt [,
→˓string dataname_gamma [, string dataname_vt]]]]])
ind = gf_model_set(model M, 'add penalized contact with rigid obstacle
→˓brick', mesh_im mim, string varname_u, string dataname_obstacle, string
→˓dataname_r [, string dataname_coeff], int region [, int option, string
→˓dataname_lambda, [, string dataname_alpha [, string dataname_wt]]])
ind = gf_model_set(model M, 'add Nitsche contact with rigid obstacle brick
→˓', mesh_im mim, string varname, string Neumannterm, string dataname_
→˓obstacle, string gamma0name, int region[, scalar theta[, string
→˓dataname_friction_coeff[, string dataname_alpha, string dataname_wt]]])
ind = gf_model_set(model M, 'add Nitsche midpoint contact with rigid
→˓obstacle brick', mesh_im mim, string varname, string Neumannterm, string
→˓Neumannterm_wt, string dataname_obstacle, string gamma0name, int region,
→˓ scalar theta, string dataname_friction_coeff, string dataname_alpha,
→˓string dataname_wt)
ind = gf_model_set(model M, 'add Nitsche fictitious domain contact brick',
→˓mesh_im mim, string varname1, string varname2, string dataname_d1,
→˓string dataname_d2, string gamma0name [, scalar theta[, string dataname_
→˓friction_coeff[, string dataname_alpha, string dataname_wt1,string
→˓dataname_wt2]]])
ind = gf_model_set(model M, 'add nodal contact between nonmatching meshes
→˓brick', mesh_im mim1[, mesh_im mim2], string varname_u1[, string
→˓varname_u2], string multname_n[, string multname_t], string dataname_r[,
→˓string dataname_fr], int rg1, int rg2[, int slave1, int slave2, int
→˓augmented_version])
ind = gf_model_set(model M, 'add nonmatching meshes contact brick', mesh_
→˓im mim1[, mesh_im mim2], string varname_u1[, string varname_u2], string
→˓multname_n[, string multname_t], string dataname_r[, string dataname_fr],
→˓ int rg1, int rg2[, int slave1, int slave2, int augmented_version])
ind = gf_model_set(model M, 'add integral contact between nonmatching
→˓meshes brick', mesh_im mim, string varname_u1, string varname_u2,
→˓string multname, string dataname_r [, string dataname_friction_coeff],
→˓int region1, int region2 [, int option [, string dataname_alpha [,
→˓string dataname_wt1 , string dataname_wt2]]])

(continues on next page)

5.39. gf_model_set 89

Scilab Interface, Release 5.4.1

(continued from previous page)

ind = gf_model_set(model M, 'add penalized contact between nonmatching
→˓meshes brick', mesh_im mim, string varname_u1, string varname_u2,
→˓string dataname_r [, string dataname_coeff], int region1, int region2 [,
→˓int option [, string dataname_lambda, [, string dataname_alpha [, string
→˓dataname_wt1, string dataname_wt2]]]])
ind = gf_model_set(model M, 'add integral large sliding contact brick
→˓raytracing', string dataname_r, scalar release_distance, [, string
→˓dataname_fr[, string dataname_alpha[, int version]]])
gf_model_set(model M, 'add rigid obstacle to large sliding contact brick',
→˓int indbrick, string expr, int N)
gf_model_set(model M, 'add master contact boundary to large sliding
→˓contact brick', int indbrick, mesh_im mim, int region, string dispname[,
→˓string wname])
gf_model_set(model M, 'add slave contact boundary to large sliding contact
→˓brick', int indbrick, mesh_im mim, int region, string dispname, string
→˓lambdaname[, string wname])
gf_model_set(model M, 'add master slave contact boundary to large sliding
→˓contact brick', int indbrick, mesh_im mim, int region, string dispname,
→˓string lambdaname[, string wname])
ind = gf_model_set(model M, 'add Nitsche large sliding contact brick
→˓raytracing', bool unbiased_version, string dataname_r, scalar release_
→˓distance[, string dataname_fr[, string dataname_alpha[, int version]]])
gf_model_set(model M, 'add rigid obstacle to Nitsche large sliding contact
→˓brick', int indbrick, string expr, int N)
gf_model_set(model M, 'add master contact boundary to biased Nitsche large
→˓sliding contact brick', int indbrick, mesh_im mim, int region, string
→˓dispname[, string wname])
gf_model_set(model M, 'add slave contact boundary to biased Nitsche large
→˓sliding contact brick', int indbrick, mesh_im mim, int region, string
→˓dispname, string lambdaname[, string wname])
gf_model_set(model M, 'add contact boundary to unbiased Nitsche large
→˓sliding contact brick', int indbrick, mesh_im mim, int region, string
→˓dispname, string lambdaname[, string wname])

Description :

Modifies a model object.

Command list :

gf_model_set(model M, 'clear')

Clear the model.

gf_model_set(model M, 'add fem variable', string name,
mesh_fem mf)

Add a variable to the model linked to a mesh_fem. <literal>name</literal> is the
variable name.

gf_model_set(model M, 'add filtered fem variable', string
name, mesh_fem mf, int region)

Add a variable to the model linked to a mesh_fem. The variable is filtered in the
sense that only the dof on the region are considered. <literal>name</literal> is
the variable name.

gf_model_set(model M, 'add im variable', string name,

90 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

mesh_imd mimd)

Add a variable to the model linked to a mesh_imd. <literal>name</literal> is the
variable name.

gf_model_set(model M, 'add internal im variable', string
name, mesh_imd mimd)

Add a variable to the model, which is linked to a mesh_imd and will be con-
densed out during the assemblage of the tangent matrix. <literal>name</literal>
is the variable name.

gf_model_set(model M, 'add variable', string name, sizes)

Add a variable to the model of constant sizes. <literal>sizes</literal> is either
a integer (for a scalar or vector variable) or a vector of dimensions for a tensor
variable. <literal>name</literal> is the variable name.

gf_model_set(model M, 'delete variable', string name)

Delete a variable or a data from the model.

gf_model_set(model M, 'resize variable', string name, sizes)

Resize a constant size variable of the model. <literal>sizes</literal> is either a
integer (for a scalar or vector variable) or a vector of dimensions for a tensor
variable. <literal>name</literal> is the variable name.

gf_model_set(model M, 'add multiplier', string name,
mesh_fem mf, string primalname[, mesh_im mim, int region])

Add a particular variable linked to a fem being a multiplier with re-
spect to a primal variable. The dof will be filtered with the <lit-
eral></literal>gmm::range_basis<literal></literal> function applied on the
terms of the model which link the multiplier and the primal variable. This in
order to retain only linearly independent constraints on the primal variable. Op-
timized for boundary multipliers.

gf_model_set(model M, 'add im data', string name, mesh_imd
mimd)

Add a data set to the model linked to a mesh_imd. <literal>name</literal> is the
data name.

gf_model_set(model M, 'add fem data', string name, mesh_fem
mf[, sizes])

Add a data to the model linked to a mesh_fem. <literal>name</literal> is the data
name, <literal>sizes</literal> an optional parameter which is either an integer or
a vector of suplementary dimensions with respect to <literal>mf</literal>.

gf_model_set(model M, 'add initialized fem data', string
name, mesh_fem mf, vec V[, sizes])

Add a data to the model linked to a mesh_fem. <literal>name</literal> is the
data name. The data is initiakized with <literal>V</literal>. The data can be
a scalar or vector field. <literal>sizes</literal> an optional parameter which is
either an integer or a vector of suplementary dimensions with respect to <lit-
eral>mf</literal>.

5.39. gf_model_set 91

Scilab Interface, Release 5.4.1

gf_model_set(model M, 'add data', string name, int size)

Add a fixed size data to the model. <literal>sizes</literal> is either a integer
(for a scalar or vector data) or a vector of dimensions for a tensor data. <lit-
eral>name</literal> is the data name.

gf_model_set(model M, 'add macro', string name, string expr)

Define a new macro for the high generic assembly language. The name in-
clude the parameters. For instance name=’sp(a,b)’, expr=’a.b’ is a valid defi-
nition. Macro without parameter can also be defined. For instance name=’x1’,
expr=’X[1]’ is valid. The form name=’grad(u)’, expr=’Grad_u’ is also allowed
but in that case, the parameter ‘u’ will only be allowed to be a variable name
when using the macro. Note that macros can be directly defined inside the as-
sembly strings with the keyword ‘Def’.

gf_model_set(model M, 'del macro', string name)

Delete a previously defined macro for the high generic assembly language.

gf_model_set(model M, 'add initialized data', string name,
vec V[, sizes])

Add an initialized fixed size data to the model. <literal>sizes</literal> an op-
tional parameter which is either an integer or a vector dimensions that describes
the format of the data. By default, the data is considered to b a vector field. <lit-
eral>name</literal> is the data name and <literal>V</literal> is the value of the
data.

gf_model_set(model M, 'variable', string name, vec V)

Set the value of a variable or data. <literal>name</literal> is the data name.

gf_model_set(model M, 'to variables', vec V)

Set the value of the variables of the model with the vector <literal>V</literal>.
Typically, the vector <literal>V</literal> results of the solve of the tangent linear
system (useful to solve your problem with you own solver).

gf_model_set(model M, 'delete brick', int ind_brick)

Delete a variable or a data from the model.

gf_model_set(model M, 'define variable group', string name[,
string varname, ...])

Defines a group of variables for the interpolation (mainly for the raytracing in-
terpolation transformation.

gf_model_set(model M, 'add elementary rotated RT0
projection', string transname)

Add the elementary transformation corresponding to the projection on rotated
RT0 element for two-dimensional elements to the model. The name is the name
given to the elementary transformation.

gf_model_set(model M, 'add elementary P0 projection', string
transname)

Add the elementary transformation corresponding to the projection P0 element.
The name is the name given to the elementary transformation.

92 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

gf_model_set(model M, 'add HHO reconstructed gradient',
string transname)

Add to the model the elementary transformation corresponding to the recon-
struction of a gradient for HHO methods. The name is the name given to the
elementary transformation.

gf_model_set(model M, 'add HHO reconstructed symmetrized
gradient', string transname)

Add to the model the elementary transformation corresponding to the reconstruc-
tion of a symmetrized gradient for HHO methods. The name is the name given
to the elementary transformation.

gf_model_set(model M, 'add HHO reconstructed value', string
transname)

Add to the model the elementary transformation corresponding to the recon-
struction of the variable for HHO methods. The name is the name given to the
elementary transformation.

gf_model_set(model M, 'add HHO reconstructed symmetrized
value', string transname)

Add to the model the elementary transformation corresponding to the reconstruc-
tion of the variable for HHO methods using a symmetrized gradient. The name
is the name given to the elementary transformation.

gf_model_set(model M, 'add HHO stabilization', string
transname)

Add to the model the elementary transformation corresponding to the HHO sta-
bilization operator. The name is the name given to the elementary transforma-
tion.

gf_model_set(model M, 'add HHO symmetrized stabilization',
string transname)

Add to the model the elementary transformation corresponding to the HHO sta-
bilization operator using a symmetrized gradient. The name is the name given to
the elementary transformation.

gf_model_set(model M, 'add interpolate transformation
from expression', string transname, mesh source_mesh, mesh
target_mesh, string expr)

Add a transformation to the model from mesh <literal>source_mesh</literal>
to mesh <literal>target_mesh</literal> given by the expression <lit-
eral>expr</literal> which corresponds to a high-level generic assembly
expression which may contains some variable of the model. CAUTION:
the derivative of the transformation with used variable is taken into account
in the computation of the tangen system. However, order two derivative is
not implemented, so such tranformation is not allowed in the definition of a
potential.

gf_model_set(model M, 'add element extrapolation
transformation', string transname, mesh source_mesh, mat
elt_corr)

5.39. gf_model_set 93

Scilab Interface, Release 5.4.1

Add a special interpolation transformation which represents the identity transfor-
mation but allows to evaluate the expression on another element than the current
element by polynomial extrapolation. It is used for stabilization term in fictitious
domain applications. the array elt_cor should be a two entry array whose first
line contains the elements concerned by the transformation and the second line
the respective elements on which the extrapolation has to be made. If an element
is not listed in elt_cor the evaluation is just made on the current element.

gf_model_set(model M, 'add standard secondary domain',
string name, mesh_im mim, int region = -1)

Add a secondary domain to the model which can be used in a weak-form
language expression for integration on the product of two domains. <lit-
eral>name</literal> is the name of the secondary domain, <literal>mim</literal>
is an integration method on this domain and <literal>region</literal> the region
on which the integration is to be performed.

gf_model_set(model M, 'set element extrapolation
correspondence', string transname, mat elt_corr)

Change the correspondence map of an element extrapolation interpolate trans-
formation.

gf_model_set(model M, 'add raytracing transformation',
string transname, scalar release_distance)

Add a raytracing interpolate transformation called <literal>transname</literal>
to a model to be used by the generic assembly bricks. CAUTION: For the mo-
ment, the derivative of the transformation is not taken into account in the model
solve.

gf_model_set(model M, 'add master contact boundary to
raytracing transformation', string transname, mesh m, string
dispname, int region)

Add a master contact boundary with corresponding displacement
variable <literal>dispname</literal> on a specific boundary <lit-
eral>region</literal> to an existing raytracing interpolate transformation
called <literal>transname</literal>.

gf_model_set(model M, 'add slave contact boundary to
raytracing transformation', string transname, mesh m, string
dispname, int region)

Add a slave contact boundary with corresponding displacement variable <lit-
eral>dispname</literal> on a specific boundary <literal>region</literal>
to an existing raytracing interpolate transformation called <lit-
eral>transname</literal>.

gf_model_set(model M, 'add rigid obstacle to raytracing
transformation', string transname, string expr, int N)

Add a rigid obstacle whose geometry corresponds to the zero level-set of the
high-level generic assembly expression <literal>expr</literal> to an existing ray-
tracing interpolate transformation called <literal>transname</literal>.

gf_model_set(model M, 'add projection transformation',
string transname, scalar release_distance)

94 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Add a projection interpolate transformation called <literal>transname</literal>
to a model to be used by the generic assembly bricks. CAUTION: For the mo-
ment, the derivative of the transformation is not taken into account in the model
solve.

gf_model_set(model M, 'add master contact boundary to
projection transformation', string transname, mesh m, string
dispname, int region)

Add a master contact boundary with corresponding displacement
variable <literal>dispname</literal> on a specific boundary <lit-
eral>region</literal> to an existing projection interpolate transformation
called <literal>transname</literal>.

gf_model_set(model M, 'add slave contact boundary to
projection transformation', string transname, mesh m, string
dispname, int region)

Add a slave contact boundary with corresponding displacement variable <lit-
eral>dispname</literal> on a specific boundary <literal>region</literal>
to an existing projection interpolate transformation called <lit-
eral>transname</literal>.

gf_model_set(model M, 'add rigid obstacle to projection
transformation', string transname, string expr, int N)

Add a rigid obstacle whose geometry corresponds to the zero level-set of the
high-level generic assembly expression <literal>expr</literal> to an existing pro-
jection interpolate transformation called <literal>transname</literal>.

ind = gf_model_set(model M, 'add linear term', mesh_im mim,
string expression[, int region[, int is_symmetric[, int
is_coercive]]])

Adds a matrix term given by the assembly string <literal>expr</literal> which
will be assembled in region <literal>region</literal> and with the integration
method <literal>mim</literal>. Only the matrix term will be taken into account,
assuming that it is linear. The advantage of declaring a term linear instead of
nonlinear is that it will be assembled only once and no assembly is necessary for
the residual. Take care that if the expression contains some variables and if the
expression is a potential or of first order (i.e. describe the weak form, not the
derivative of the weak form), the expression will be derivated with respect to all
variables. You can specify if the term is symmetric, coercive or not. If you are
not sure, the better is to declare the term not symmetric and not coercive. But
some solvers (conjugate gradient for instance) are not allowed for non-coercive
problems. <literal>brickname</literal> is an optional name for the brick.

ind = gf_model_set(model M, 'add linear twodomain term',
mesh_im mim, string expression, int region, string
secondary_domain[, int is_symmetric[, int is_coercive]])

Adds a linear term given by a weak form language expression like
gf_model_set(model M, ‘add linear term’) but for an integration on a direct prod-
uct of two domains, a first specfied by <literal></literal>mim<literal></literal>
and <literal></literal>region<literal></literal> and a second one by <lit-
eral></literal>secondary_domain<literal></literal> which has to be declared

5.39. gf_model_set 95

Scilab Interface, Release 5.4.1

first into the model.

ind = gf_model_set(model M, 'add linear generic assembly
brick', mesh_im mim, string expression[, int region[, int
is_symmetric[, int is_coercive]]])

Deprecated. Use gf_model_set(model M, ‘add linear term’) instead.

ind = gf_model_set(model M, 'add nonlinear term', mesh_im
mim, string expression[, int region[, int is_symmetric[, int
is_coercive]]])

Adds a nonlinear term given by the assembly string <literal>expr</literal> which
will be assembled in region <literal>region</literal> and with the integration
method <literal>mim</literal>. The expression can describe a potential or a
weak form. Second order terms (i.e. containing second order test functions,
Test2) are not allowed. You can specify if the term is symmetric, coercive or
not. If you are not sure, the better is to declare the term not symmetric and not
coercive. But some solvers (conjugate gradient for instance) are not allowed for
non-coercive problems. <literal>brickname</literal> is an optional name for the
brick.

ind = gf_model_set(model M, 'add nonlinear twodomain
term', mesh_im mim, string expression, int region, string
secondary_domain[, int is_symmetric[, int is_coercive]])

Adds a nonlinear term given by a weak form language ex-
pression like gf_model_set(model M, ‘add nonlinear term’) but
for an integration on a direct product of two domains, a first
specfied by <literal></literal>mim<literal></literal> and <lit-
eral></literal>region<literal></literal> and a second one by <lit-
eral></literal>secondary_domain<literal></literal> which has to be declared
first into the model.

ind = gf_model_set(model M, 'add nonlinear generic assembly
brick', mesh_im mim, string expression[, int region[, int
is_symmetric[, int is_coercive]]])

Deprecated. Use gf_model_set(model M, ‘add nonlinear term’) instead.

ind = gf_model_set(model M, 'add source term', mesh_im mim,
string expression[, int region])

Adds a source term given by the assembly string <literal>expr</literal> which
will be assembled in region <literal>region</literal> and with the integration
method <literal>mim</literal>. Only the residual term will be taken into ac-
count. Take care that if the expression contains some variables and if the expres-
sion is a potential, the expression will be derivated with respect to all variables.
<literal>brickname</literal> is an optional name for the brick.

ind = gf_model_set(model M, 'add twodomain source term',
mesh_im mim, string expression, int region, string
secondary_domain)

Adds a source term given by a weak form language expres-
sion like gf_model_set(model M, ‘add source term’) but for
an integration on a direct product of two domains, a first

96 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

specfied by <literal></literal>mim<literal></literal> and <lit-
eral></literal>region<literal></literal> and a second one by <lit-
eral></literal>secondary_domain<literal></literal> which has to be declared
first into the model.

ind = gf_model_set(model M, 'add source term generic
assembly brick', mesh_im mim, string expression[, int
region])

Deprecated. Use gf_model_set(model M, ‘add source term’) instead.

gf_model_set(model M, 'add assembly assignment', string
dataname, string expression[, int region[, int order[, int
before]]])

Adds expression <literal>expr</literal> to be evaluated at assembly time and be-
ing assigned to the data <literal>dataname</literal> which has to be of im_data
type. This allows for instance to store a sub-expression of an assembly compu-
tation to be used on an other assembly. It can be used for instance to store the
plastic strain in plasticity models. <literal>order</literal> represents the order
of assembly where this assignement has to be done (potential(0), weak form(1)
or tangent system(2) or at each order(-1)). The default value is 1. If before = 1,
the the assignement is perfromed before the computation of the other assembly
terms, such that the data can be used in the remaining of the assembly as an in-
termediary result (be careful that it is still considered as a data, no derivation of
the expression is performed for the tangent system). If before = 0 (default), the
assignement is done after the assembly terms.

gf_model_set(model M, 'clear assembly assignment')

Delete all added assembly assignments

ind = gf_model_set(model M, 'add Laplacian brick', mesh_im
mim, string varname[, int region])

Add a Laplacian term to the model relatively to the variable <lit-
eral>varname</literal> (in fact with a minus : <latex style=”text”><![CDATA[-
text{div}(nabla u)]]></latex>). If this is a vector valued variable, the Laplacian
term is added componentwise. <literal>region</literal> is an optional mesh re-
gion on which the term is added. If it is not specified, it is added on the whole
mesh. Return the brick index in the model.

ind = gf_model_set(model M, 'add generic elliptic brick',
mesh_im mim, string varname, string dataname[, int region])

Add a generic elliptic term to the model relatively to the variable
<literal>varname</literal>. The shape of the elliptic term depends
both on the variable and the data. This corresponds to a term <la-
tex style=”text”><![CDATA[-text{div}(anabla u)]]></latex> where
<latex style=”text”><![CDATA[a]]></latex> is the data and <latex
style=”text”><![CDATA[u]]></latex> the variable. The data can be a
scalar, a matrix or an order four tensor. The variable can be vector valued or
not. If the data is a scalar or a matrix and the variable is vector valued then
the term is added componentwise. An order four tensor data is allowed for
vector valued variable only. The data can be constant or describbed on a fem.
Of course, when the data is a tensor describe on a finite element method (a

5.39. gf_model_set 97

Scilab Interface, Release 5.4.1

tensor field) the data can be a huge vector. The components of the matrix/tensor
have to be stored with the fortran order (columnwise) in the data vector (com-
patibility with blas). The symmetry of the given matrix/tensor is not verified
(but assumed). If this is a vector valued variable, the elliptic term is added
componentwise. <literal>region</literal> is an optional mesh region on which
the term is added. If it is not specified, it is added on the whole mesh. Note
that for the real version which uses the high-level generic assembly language,
<literal>dataname</literal> can be any regular expression of the high-level
generic assembly language (like “1”, “sin(X(1))” or “Norm(u)” for instance)
even depending on model variables. Return the brick index in the model.

ind = gf_model_set(model M, 'add source term brick', mesh_im
mim, string varname, string dataexpr[, int region[, string
directdataname]])

Add a source term to the model relatively to the variable <lit-
eral>varname</literal>. The source term is represented by <lit-
eral>dataexpr</literal> which could be any regular expression of the high-level
generic assembly language (except for the complex version where it has to
be a declared data of the model). <literal>region</literal> is an optional
mesh region on which the term is added. An additional optional data <lit-
eral>directdataname</literal> can be provided. The corresponding data vector
will be directly added to the right hand side without assembly. Note that
when region is a boundary, this brick allows to prescribe a nonzero Neumann
boundary condition. Return the brick index in the model.

ind = gf_model_set(model M, 'add normal source term brick',
mesh_im mim, string varname, string dataname, int region)

Add a source term on the variable <literal>varname</literal> on a boundary <lit-
eral>region</literal>. This region should be a boundary. The source term is
represented by the data <literal>dataepxpr</literal> which could be any regular
expression of the high-level generic assembly language (except for the complex
version where it has to be a declared data of the model). A scalar product with
the outward normal unit vector to the boundary is performed. The main aim of
this brick is to represent a Neumann condition with a vector data without per-
forming the scalar product with the normal as a pre-processing. Return the brick
index in the model.

ind = gf_model_set(model M, 'add Dirichlet condition
with simplification', string varname, int region[, string
dataname])

Adds a (simple) Dirichlet condition on the variable <literal>varname</literal>
and the mesh region <literal>region</literal>. The Dirichlet condition is pre-
scribed by a simple post-treatment of the final linear system (tangent system
for nonlinear problems) consisting of modifying the lines corresponding to the
degree of freedom of the variable on <literal>region</literal> (0 outside the di-
agonal, 1 on the diagonal of the matrix and the expected value on the right hand
side). The symmetry of the linear system is kept if all other bricks are symmetric.
This brick is to be reserved for simple Dirichlet conditions (only dof declared on
the corresponding boundary are prescribed). The application of this brick on
reduced dof may be problematic. Intrinsic vectorial finite element method are
not supported. <literal>dataname</literal> is the optional right hand side of the

98 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Dirichlet condition. It could be constant (but in that case, it can only be applied
to Lagrange f.e.m.) or (important) described on the same finite element method
as <literal>varname</literal>. Returns the brick index in the model.

ind = gf_model_set(model M, 'add Dirichlet condition with
multipliers', mesh_im mim, string varname, mult_description,
int region[, string dataname])

Add a Dirichlet condition on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>. This region should be a boundary. The
Dirichlet condition is prescribed with a multiplier variable described by <lit-
eral>mult_description</literal>. If <literal>mult_description</literal> is a string
this is assumed to be the variable name corresponding to the multiplier (which
should be first declared as a multiplier variable on the mesh region in the model).
If it is a finite element method (mesh_fem object) then a multiplier variable will
be added to the model and build on this finite element method (it will be restricted
to the mesh region <literal>region</literal> and eventually some conflicting dofs
with some other multiplier variables will be suppressed). If it is an integer, then
a multiplier variable will be added to the model and build on a classical finite
element of degree that integer. <literal>dataname</literal> is the optional right
hand side of the Dirichlet condition. It could be constant or described on a fem;
scalar or vector valued, depending on the variable on which the Dirichlet condi-
tion is prescribed. Return the brick index in the model.

ind = gf_model_set(model M, 'add Dirichlet condition
with Nitsche method', mesh_im mim, string varname, string
Neumannterm, string datagamma0, int region[, scalar theta][,
string dataname])

Add a Dirichlet condition on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>. This region should be a boundary. <lit-
eral>Neumannterm</literal> is the expression of the Neumann term (obtained
by the Green formula) described as an expression of the high-level generic
assembly language. This term can be obtained by gf_model_get(model M,
‘Neumann term’, varname, region) once all volumic bricks have been added
to the model. The Dirichlet condition is prescribed with Nitsche’s method.
<literal>datag</literal> is the optional right hand side of the Dirichlet condi-
tion. <literal>datagamma0</literal> is the Nitsche’s method parameter. <lit-
eral>theta</literal> is a scalar value which can be positive or negative. <lit-
eral>theta = 1</literal> corresponds to the standard symmetric method which
is conditionally coercive for <literal>gamma0</literal> small. <literal>theta =
-1</literal> corresponds to the skew-symmetric method which is inconditionally
coercive. <literal>theta = 0</literal> (default) is the simplest method for which
the second derivative of the Neumann term is not necessary even for nonlinear
problems. Return the brick index in the model.

ind = gf_model_set(model M, 'add Dirichlet condition with
penalization', mesh_im mim, string varname, scalar coeff,
int region[, string dataname, mesh_fem mf_mult])

Add a Dirichlet condition on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>. This region should be a boundary. The
Dirichlet condition is prescribed with penalization. The penalization coefficient
is initially <literal>coeff</literal> and will be added to the data of the model.

5.39. gf_model_set 99

Scilab Interface, Release 5.4.1

<literal>dataname</literal> is the optional right hand side of the Dirichlet con-
dition. It could be constant or described on a fem; scalar or vector valued, de-
pending on the variable on which the Dirichlet condition is prescribed. <lit-
eral>mf_mult</literal> is an optional parameter which allows to weaken the
Dirichlet condition specifying a multiplier space. Return the brick index in the
model.

ind = gf_model_set(model M, 'add normal Dirichlet
condition with multipliers', mesh_im mim, string varname,
mult_description, int region[, string dataname])

Add a Dirichlet condition to the normal component of the vector (or ten-
sor) valued variable <literal>varname</literal> and the mesh region <lit-
eral>region</literal>. This region should be a boundary. The Dirich-
let condition is prescribed with a multiplier variable described by <lit-
eral>mult_description</literal>. If <literal>mult_description</literal> is a string
this is assumed to be the variable name corresponding to the multiplier (which
should be first declared as a multiplier variable on the mesh region in the model).
If it is a finite element method (mesh_fem object) then a multiplier variable will
be added to the model and build on this finite element method (it will be restricted
to the mesh region <literal>region</literal> and eventually some conflicting dofs
with some other multiplier variables will be suppressed). If it is an integer, then
a multiplier variable will be added to the model and build on a classical finite
element of degree that integer. <literal>dataname</literal> is the optional right
hand side of the Dirichlet condition. It could be constant or described on a fem;
scalar or vector valued, depending on the variable on which the Dirichlet condi-
tion is prescribed (scalar if the variable is vector valued, vector if the variable is
tensor valued). Returns the brick index in the model.

ind = gf_model_set(model M, 'add normal Dirichlet condition
with penalization', mesh_im mim, string varname, scalar
coeff, int region[, string dataname, mesh_fem mf_mult])

Add a Dirichlet condition to the normal component of the vector (or ten-
sor) valued variable <literal>varname</literal> and the mesh region <lit-
eral>region</literal>. This region should be a boundary. The Dirichlet con-
dition is prescribed with penalization. The penalization coefficient is initially
<literal>coeff</literal> and will be added to the data of the model. <lit-
eral>dataname</literal> is the optional right hand side of the Dirichlet condi-
tion. It could be constant or described on a fem; scalar or vector valued, de-
pending on the variable on which the Dirichlet condition is prescribed (scalar
if the variable is vector valued, vector if the variable is tensor valued). <lit-
eral>mf_mult</literal> is an optional parameter which allows to weaken the
Dirichlet condition specifying a multiplier space. Returns the brick index in
the model.

ind = gf_model_set(model M, 'add normal Dirichlet condition
with Nitsche method', mesh_im mim, string varname, string
Neumannterm, string gamma0name, int region[, scalar theta][,
string dataname])

Add a Dirichlet condition to the normal component of the vector (or
tensor) valued variable <literal>varname</literal> and the mesh region
<literal>region</literal>. This region should be a boundary. <lit-

100 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

eral>Neumannterm</literal> is the expression of the Neumann term (obtained
by the Green formula) described as an expression of the high-level generic as-
sembly language. This term can be obtained by gf_model_get(model M, ‘Neu-
mann term’, varname, region) once all volumic bricks have been added to the
model. The Dirichlet condition is prescribed with Nitsche’s method. <lit-
eral>dataname</literal> is the optional right hand side of the Dirichlet condi-
tion. It could be constant or described on a fem. <literal>gamma0name</literal>
is the Nitsche’s method parameter. <literal>theta</literal> is a scalar value
which can be positive or negative. <literal>theta = 1</literal> corresponds
to the standard symmetric method which is conditionally coercive for <lit-
eral>gamma0</literal> small. <literal>theta = -1</literal> corresponds to the
skew-symmetric method which is inconditionally coercive. <literal>theta =
0</literal> is the simplest method for which the second derivative of the Neu-
mann term is not necessary even for nonlinear problems. Returns the brick index
in the model. (This brick is not fully tested)

ind = gf_model_set(model M, 'add generalized Dirichlet
condition with multipliers', mesh_im mim, string varname,
mult_description, int region, string dataname, string Hname)

Add a Dirichlet condition on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>. This version is for vector field. It pre-
scribes a condition <latex style=”text”><![CDATA[Hu = r]]></latex> where
<literal>H</literal> is a matrix field. The region should be a boundary. The
Dirichlet condition is prescribed with a multiplier variable described by <lit-
eral>mult_description</literal>. If <literal>mult_description</literal> is a string
this is assumed to be the variable name corresponding to the multiplier (which
should be first declared as a multiplier variable on the mesh region in the model).
If it is a finite element method (mesh_fem object) then a multiplier variable will
be added to the model and build on this finite element method (it will be restricted
to the mesh region <literal>region</literal> and eventually some conflicting dofs
with some other multiplier variables will be suppressed). If it is an integer, then
a multiplier variable will be added to the model and build on a classical finite
element of degree that integer. <literal>dataname</literal> is the right hand side
of the Dirichlet condition. It could be constant or described on a fem; scalar or
vector valued, depending on the variable on which the Dirichlet condition is pre-
scribed. <literal>Hname</literal> is the data corresponding to the matrix field
<literal>H</literal>. Returns the brick index in the model.

ind = gf_model_set(model M, 'add generalized Dirichlet
condition with penalization', mesh_im mim, string varname,
scalar coeff, int region, string dataname, string Hname[,
mesh_fem mf_mult])

Add a Dirichlet condition on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>. This version is for vector field. It pre-
scribes a condition <latex style=”text”><![CDATA[Hu = r]]></latex> where
<literal>H</literal> is a matrix field. The region should be a boundary. The
Dirichlet condition is prescribed with penalization. The penalization coefficient
is intially <literal>coeff</literal> and will be added to the data of the model. <lit-
eral>dataname</literal> is the right hand side of the Dirichlet condition. It could
be constant or described on a fem; scalar or vector valued, depending on the vari-
able on which the Dirichlet condition is prescribed. <literal>Hname</literal> is

5.39. gf_model_set 101

Scilab Interface, Release 5.4.1

the data corresponding to the matrix field <literal>H</literal>. It has to be a
constant matrix or described on a scalar fem. <literal>mf_mult</literal> is an
optional parameter which allows to weaken the Dirichlet condition specifying a
multiplier space. Return the brick index in the model.

ind = gf_model_set(model M, 'add generalized Dirichlet
condition with Nitsche method', mesh_im mim, string varname,
string Neumannterm, string gamma0name, int region[, scalar
theta], string dataname, string Hname)

Add a Dirichlet condition on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>. This version is for vector field. It pre-
scribes a condition @f$ Hu = r @f$ where <literal>H</literal> is a matrix
field. CAUTION : the matrix H should have all eigenvalues equal to 1 or 0.
The region should be a boundary. <literal>Neumannterm</literal> is the ex-
pression of the Neumann term (obtained by the Green formula) described as
an expression of the high-level generic assembly language. This term can be
obtained by gf_model_get(model M, ‘Neumann term’, varname, region) once
all volumic bricks have been added to the model. The Dirichlet condition is
prescribed with Nitsche’s method. <literal>dataname</literal> is the optional
right hand side of the Dirichlet condition. It could be constant or described
on a fem. <literal>gamma0name</literal> is the Nitsche’s method parameter.
<literal>theta</literal> is a scalar value which can be positive or negative. <lit-
eral>theta = 1</literal> corresponds to the standard symmetric method which
is conditionally coercive for <literal>gamma0</literal> small. <literal>theta =
-1</literal> corresponds to the skew-symmetric method which is incondition-
ally coercive. <literal>theta = 0</literal> is the simplest method for which the
second derivative of the Neumann term is not necessary even for nonlinear prob-
lems. <literal>Hname</literal> is the data corresponding to the matrix field <lit-
eral>H</literal>. It has to be a constant matrix or described on a scalar fem.
Returns the brick index in the model. (This brick is not fully tested)

ind = gf_model_set(model M, 'add pointwise constraints with
multipliers', string varname, string dataname_pt[, string
dataname_unitv] [, string dataname_val])

Add some pointwise constraints on the variable <literal>varname</literal> us-
ing multiplier. The multiplier variable is automatically added to the model.
The conditions are prescribed on a set of points given in the data <lit-
eral>dataname_pt</literal> whose dimension is the number of points times the
dimension of the mesh. If the variable represents a vector field, one has to give
the data <literal>dataname_unitv</literal> which represents a vector of dimen-
sion the number of points times the dimension of the vector field which should
store some unit vectors. In that case the prescribed constraint is the scalar prod-
uct of the variable at the corresponding point with the corresponding unit vector.
The optional data <literal>dataname_val</literal> is the vector of values to be
prescribed at the different points. This brick is specifically designed to kill rigid
displacement in a Neumann problem. Returns the brick index in the model.

ind = gf_model_set(model M, 'add pointwise constraints
with given multipliers', string varname, string multname,
string dataname_pt[, string dataname_unitv] [, string
dataname_val])

102 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Add some pointwise constraints on the variable <literal>varname</literal> using
a given multiplier <literal>multname</literal>. The conditions are prescribed on
a set of points given in the data <literal>dataname_pt</literal> whose dimension
is the number of points times the dimension of the mesh. The multiplier variable
should be a fixed size variable of size the number of points. If the variable repre-
sents a vector field, one has to give the data <literal>dataname_unitv</literal>
which represents a vector of dimension the number of points times the di-
mension of the vector field which should store some unit vectors. In that
case the prescribed constraint is the scalar product of the variable at the cor-
responding point with the corresponding unit vector. The optional data <lit-
eral>dataname_val</literal> is the vector of values to be prescribed at the dif-
ferent points. This brick is specifically designed to kill rigid displacement in a
Neumann problem. Returns the brick index in the model.

ind = gf_model_set(model M, 'add pointwise constraints
with penalization', string varname, scalar coeff,
string dataname_pt[, string dataname_unitv] [, string
dataname_val])

Add some pointwise constraints on the variable <literal>varname</literal>
thanks to a penalization. The penalization coefficient is initially <lit-
eral>penalization_coeff</literal> and will be added to the data of the model.
The conditions are prescribed on a set of points given in the data <lit-
eral>dataname_pt</literal> whose dimension is the number of points times the
dimension of the mesh. If the variable represents a vector field, one has to give
the data <literal>dataname_unitv</literal> which represents a vector of dimen-
sion the number of points times the dimension of the vector field which should
store some unit vectors. In that case the prescribed constraint is the scalar prod-
uct of the variable at the corresponding point with the corresponding unit vector.
The optional data <literal>dataname_val</literal> is the vector of values to be
prescribed at the different points. This brick is specifically designed to kill rigid
displacement in a Neumann problem. Returns the brick index in the model.

gf_model_set(model M, 'change penalization coeff', int
ind_brick, scalar coeff)

Change the penalization coefficient of a Dirichlet condition with penalization
brick. If the brick is not of this kind, this function has an undefined behavior.

ind = gf_model_set(model M, 'add Helmholtz brick', mesh_im
mim, string varname, string dataexpr[, int region])

Add a Helmholtz term to the model relatively to the variable <lit-
eral>varname</literal>. <literal>dataexpr</literal> is the wave number. <lit-
eral>region</literal> is an optional mesh region on which the term is added. If
it is not specified, it is added on the whole mesh. Return the brick index in the
model.

ind = gf_model_set(model M, 'add Fourier Robin brick',
mesh_im mim, string varname, string dataexpr, int region)

Add a Fourier-Robin term to the model relatively to the variable <lit-
eral>varname</literal>. This corresponds to a weak term of the form <la-
tex style=”text”><![CDATA[int (qu).v]]></latex>. <literal>dataexpr</literal> is
the parameter <latex style=”text”><![CDATA[q]]></latex> of the Fourier-Robin

5.39. gf_model_set 103

Scilab Interface, Release 5.4.1

condition. It can be an arbitrary valid expression of the high-level generic assem-
bly language (except for the complex version for which it should be a data of the
model). <literal>region</literal> is the mesh region on which the term is added.
Return the brick index in the model.

ind = gf_model_set(model M, 'add constraint with
multipliers', string varname, string multname, spmat B, {vec
L | string dataname})

Add an additional explicit constraint on the variable <literal>varname</literal>
thank to a multiplier <literal>multname</literal> peviously added to the
model (should be a fixed size variable). The constraint is <latex
style=”text”><![CDATA[BU=L]]></latex> with <literal>B</literal> being a
rectangular sparse matrix. It is possible to change the constraint at any
time with the methods gf_model_set(model M, ‘set private matrix’) and
gf_model_set(model M, ‘set private rhs’). If <literal>dataname</literal> is spec-
ified instead of <literal>L</literal>, the vector <literal>L</literal> is defined in
the model as data with the given name. Return the brick index in the model.

ind = gf_model_set(model M, 'add constraint with
penalization', string varname, scalar coeff, spmat B, {vec
L | string dataname})

Add an additional explicit penalized constraint on the variable <lit-
eral>varname</literal>. The constraint is :math<literal>BU=L</literal> with
<literal>B</literal> being a rectangular sparse matrix. Be aware that <lit-
eral>B</literal> should not contain a plain row, otherwise the whole tangent
matrix will be plain. It is possible to change the constraint at any time with the
methods gf_model_set(model M, ‘set private matrix’) and gf_model_set(model
M, ‘set private rhs’). The method gf_model_set(model M, ‘change penalization
coeff’) can be used. If <literal>dataname</literal> is specified instead of <lit-
eral>L</literal>, the vector <literal>L</literal> is defined in the model as data
with the given name. Return the brick index in the model.

ind = gf_model_set(model M, 'add explicit matrix', string
varname1, string varname2, spmat B[, int issymmetric[, int
iscoercive]])

Add a brick representing an explicit matrix to be added to the tangent lin-
ear system relatively to the variables <literal>varname1</literal> and <lit-
eral>varname2</literal>. The given matrix should have has many rows as the
dimension of <literal>varname1</literal> and as many columns as the dimen-
sion of <literal>varname2</literal>. If the two variables are different and if <lit-
eral>issymmetric</literal> is set to 1 then the transpose of the matrix is also
added to the tangent system (default is 0). Set <literal>iscoercive</literal> to
1 if the term does not affect the coercivity of the tangent system (default is 0).
The matrix can be changed by the command gf_model_set(model M, ‘set private
matrix’). Return the brick index in the model.

ind = gf_model_set(model M, 'add explicit rhs', string
varname, vec L)

Add a brick representing an explicit right hand side to be added to the
right hand side of the tangent linear system relatively to the variable <lit-
eral>varname</literal>. The given rhs should have the same size than the di-

104 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

mension of <literal>varname</literal>. The rhs can be changed by the command
gf_model_set(model M, ‘set private rhs’). If <literal>dataname</literal> is spec-
ified instead of <literal>L</literal>, the vector <literal>L</literal> is defined in
the model as data with the given name. Return the brick index in the model.

gf_model_set(model M, 'set private matrix', int indbrick,
spmat B)

For some specific bricks having an internal sparse matrix (explicit bricks: ‘con-
straint brick’ and ‘explicit matrix brick’), set this matrix.

gf_model_set(model M, 'set private rhs', int indbrick, vec
B)

For some specific bricks having an internal right hand side vector (explicit bricks:
‘constraint brick’ and ‘explicit rhs brick’), set this rhs.

ind = gf_model_set(model M, 'add isotropic linearized
elasticity brick', mesh_im mim, string varname, string
dataname_lambda, string dataname_mu[, int region])

Add an isotropic linearized elasticity term to the model relatively to the
variable <literal>varname</literal>. <literal>dataname_lambda</literal> and
<literal>dataname_mu</literal> should contain the Lame coefficients. <lit-
eral>region</literal> is an optional mesh region on which the term is added.
If it is not specified, it is added on the whole mesh. Return the brick index in the
model.

ind = gf_model_set(model M, 'add isotropic linearized
elasticity pstrain brick', mesh_im mim, string varname,
string data_E, string data_nu[, int region])

Add an isotropic linearized elasticity term to the model relatively to
the variable <literal>varname</literal>. <literal>data_E</literal> and <lit-
eral>data_nu</literal> should contain the Young modulus and Poisson ratio, re-
spectively. <literal>region</literal> is an optional mesh region on which the
term is added. If it is not specified, it is added on the whole mesh. On two-
dimensional meshes, the term will correpsond to a plain strain approximation.
On three-dimensional meshes, it will correspond to the standard model. Return
the brick index in the model.

ind = gf_model_set(model M, 'add isotropic linearized
elasticity pstress brick', mesh_im mim, string varname,
string data_E, string data_nu[, int region])

Add an isotropic linearized elasticity term to the model relatively to
the variable <literal>varname</literal>. <literal>data_E</literal> and <lit-
eral>data_nu</literal> should contain the Young modulus and Poisson ratio, re-
spectively. <literal>region</literal> is an optional mesh region on which the
term is added. If it is not specified, it is added on the whole mesh. On two-
dimensional meshes, the term will correpsond to a plain stress approximation.
On three-dimensional meshes, it will correspond to the standard model. Return
the brick index in the model.

ind = gf_model_set(model M, 'add linear incompressibility
brick', mesh_im mim, string varname, string
multname_pressure[, int region[, string dataexpr_coeff]])

5.39. gf_model_set 105

Scilab Interface, Release 5.4.1

Add a linear incompressibility condition on <literal>variable</literal>. <lit-
eral>multname_pressure</literal> is a variable which represent the pressure. Be
aware that an inf-sup condition between the finite element method describing
the pressure and the primal variable has to be satisfied. <literal>region</literal>
is an optional mesh region on which the term is added. If it is not spec-
ified, it is added on the whole mesh. <literal>dataexpr_coeff</literal> is
an optional penalization coefficient for nearly incompressible elasticity for
instance. In this case, it is the inverse of the Lame coefficient <latex
style=”text”><![CDATA[lambda]]></latex>. Return the brick index in the
model.

ind = gf_model_set(model M, 'add nonlinear elasticity
brick', mesh_im mim, string varname, string
constitutive_law, string dataname[, int region])

Add a nonlinear elasticity term to the model relatively to the variable <lit-
eral>varname</literal> (deprecated brick, use add_finite_strain_elaticity in-
stead). <literal>lawname</literal> is the constitutive law which could be
‘SaintVenant Kirchhoff’, ‘Mooney Rivlin’, ‘neo Hookean’, ‘Ciarlet Geymonat’
or ‘generalized Blatz Ko’. ‘Mooney Rivlin’ and ‘neo Hookean’ law names can
be preceded with the word ‘compressible’ or ‘incompressible’ to force using
the corresponding version. The compressible version of these laws requires
one additional material coefficient. By default, the incompressible version of
‘Mooney Rivlin’ law and the compressible one of the ‘neo Hookean’ law are
considered. In general, ‘neo Hookean’ is a special case of the ‘Mooney Rivlin’
law that requires one coefficient less. IMPORTANT : if the variable is de-
fined on a 2D mesh, the plane strain approximation is automatically used. <lit-
eral>dataname</literal> is a vector of parameters for the constitutive law. Its
length depends on the law. It could be a short vector of constant values or a
vector field described on a finite element method for variable coefficients. <lit-
eral>region</literal> is an optional mesh region on which the term is added. If
it is not specified, it is added on the whole mesh. This brick use the low-level
generic assembly. Returns the brick index in the model.

ind = gf_model_set(model M, 'add finite strain elasticity
brick', mesh_im mim, string constitutive_law, string
varname, string params[, int region])

Add a nonlinear elasticity term to the model relatively to the variable <lit-
eral>varname</literal>. <literal>lawname</literal> is the constitutive law which
could be ‘SaintVenant Kirchhoff’, ‘Mooney Rivlin’, ‘Neo Hookean’, ‘Ciarlet
Geymonat’ or ‘Generalized Blatz Ko’. ‘Mooney Rivlin’ and ‘Neo Hookean’ law
names have to be preceeded with the word ‘Compressible’ or ‘Incompressible’
to force using the corresponding version. The compressible version of these laws
requires one additional material coefficient.

IMPORTANT : if the variable is defined on a 2D mesh, the plane strain approxi-
mation is automatically used. <literal>params</literal> is a vector of parameters
for the constitutive law. Its length depends on the law. It could be a short vector
of constant values or a vector field described on a finite element method for vari-
able coefficients. <literal>region</literal> is an optional mesh region on which
the term is added. If it is not specified, it is added on the whole mesh. This brick
use the high-level generic assembly. Returns the brick index in the model.

106 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

ind = gf_model_set(model M, 'add small strain
elastoplasticity brick', mesh_im mim, string lawname, string
unknowns_type [, string varnames, ...] [, string params, ..
.] [, string theta = '1' [, string dt = 'timestep']] [, int
region = -1])

Adds a small strain plasticity term to the model <literal>M</literal>. This is the
main GetFEM brick for small strain plasticity. <literal>lawname</literal> is the
name of an implemented plastic law, <literal>unknowns_type</literal> indicates
the choice between a discretization where the plastic multiplier is an unknown
of the problem or (return mapping approach) just a data of the model stored for
the next iteration. Remember that in both cases, a multiplier is stored anyway.
<literal>varnames</literal> is a set of variable and data names with length which
may depend on the plastic law (at least the displacement, the plastic multiplier
and the plastic strain). <literal>params</literal> is a list of expressions for the
parameters (at least elastic coefficients and the yield stress). These expressions
can be some data names (or even variable names) of the model but can also be
any scalar valid expression of the high level assembly language (such as ‘1/2’,
‘2+sin(X[0])’, ‘1+Norm(v)’ . . .). The last two parameters optionally provided
in <literal>params</literal> are the <literal>theta</literal> parameter of the
<literal>theta</literal>-scheme (generalized trapezoidal rule) used for the plas-
tic strain integration and the time-step<literal>dt</literal>. The default value for
<literal>theta</literal> if omitted is 1, which corresponds to the classical Back-
ward Euler scheme which is first order consistent. <literal>theta=1/2</literal>
corresponds to the Crank-Nicolson scheme (trapezoidal rule) which is second
order consistent. Any value between 1/2 and 1 should be a valid value. The de-
fault value of <literal>dt</literal> is ‘timestep’ which simply indicates the time
step defined in the model (by md.set_time_step(dt)). Alternatively it can be any
expression (data name, constant value . . .). The time step can be altered from
one iteration to the next one. <literal>region</literal> is a mesh region.

The available plasticity laws are:

• ‘Prandtl Reuss’ (or ‘isotropic perfect plasticity’). Isotropic elasto-plasticity
with no hardening. The variables are the displacement, the plastic mul-
tiplier and the plastic strain. The displacement should be a variable and
have a corresponding data having the same name preceded by ‘Previous_’
corresponding to the displacement at the previous time step (typically ‘u’
and ‘Previous_u’). The plastic multiplier should also have two versions
(typically ‘xi’ and ‘Previous_xi’) the first one being defined as data if <lit-
eral>unknowns_type </literal> is ‘DISPLACEMENT_ONLY’ or the inte-
ger value 0, or as a variable if <literal>unknowns_type</literal> is DIS-
PLACEMENT_AND_PLASTIC_MULTIPLIER or the integer value 1. The
plastic strain should represent a n x n data tensor field stored on mesh_fem
or (preferably) on an im_data (corresponding to <literal>mim</literal>).
The data are the first Lame coefficient, the second one (shear modulus)
and the uniaxial yield stress. A typical call is gf_model_get(model M, ‘add
small strain elastoplasticity brick’, mim, ‘Prandtl Reuss’, 0, ‘u’, ‘xi’, ‘Previ-
ous_Ep’, ‘lambda’, ‘mu’, ‘sigma_y’, ‘1’, ‘timestep’); IMPORTANT: Note
that this law implements the 3D expressions. If it is used in 2D, the expres-
sions are just transposed to the 2D. For the plane strain approximation, see
below.

5.39. gf_model_set 107

Scilab Interface, Release 5.4.1

• “plane strain Prandtl Reuss” (or “plane strain isotropic perfect plasticity”)
The same law as the previous one but adapted to the plane strain approxi-
mation. Can only be used in 2D.

• “Prandtl Reuss linear hardening” (or “isotropic plasticity linear hardening”).
Isotropic elasto-plasticity with linear isotropic and kinematic hardening. An
additional variable compared to “Prandtl Reuss” law: the accumulated plas-
tic strain. Similarly to the plastic strain, it is only stored at the end of the
time step, so a simple data is required (preferably on an im_data). Two addi-
tional parameters: the kinematic hardening modulus and the isotropic one.
3D expressions only. A typical call is gf_model_get(model M, ‘add small
strain elastoplasticity brick’, mim, ‘Prandtl Reuss linear hardening’, 0, ‘u’,
‘xi’, ‘Previous_Ep’, ‘Previous_alpha’, ‘lambda’, ‘mu’, ‘sigma_y’, ‘H_k’,
H_i’, ‘1’, ‘timestep’);

• “plane strain Prandtl Reuss linear hardening” (or “plane strain isotropic
plasticity linear hardening”). The same law as the previous one but adapted
to the plane strain approximation. Can only be used in 2D.

See GetFEM user documentation for further explanations on the discretization
of the plastic flow and on the implemented plastic laws. See also GetFEM user
documentation on time integration strategy (integration of transient problems).

IMPORTANT : remember that <literal>small_strain_elastoplasticity_next_iter</literal>
has to be called at the end of each time step, before the next one (and before any
post-treatment : this sets the value of the plastic strain and plastic multiplier).

ind = gf_model_set(model M, 'add elastoplasticity brick',
mesh_im mim ,string projname, string varname, string
previous_dep_name, string datalambda, string datamu, string
datathreshold, string datasigma[, int region])

Old (obsolete) brick which do not use the high level generic assembly. Add
a nonlinear elastoplastic term to the model relatively to the variable <lit-
eral>varname</literal>, in small deformations, for an isotropic material and
for a quasistatic model. <literal>projname</literal> is the type of projection
that used: only the Von Mises projection is available with ‘VM’ or ‘Von
Mises’. <literal>datasigma</literal> is the variable representing the constraints
on the material. <literal>previous_dep_name</literal> represents the displace-
ment at the previous time step. Moreover, the finite element method on which
<literal>varname</literal> is described is an K ordered mesh_fem, the <lit-
eral>datasigma</literal> one have to be at least an K-1 ordered mesh_fem.
<literal>datalambda</literal> and <literal>datamu</literal> are the Lame coef-
ficients of the studied material. <literal>datathreshold</literal> is the plasticity
threshold of the material. The three last variables could be constants or described
on the same finite element method. <literal>region</literal> is an optional mesh
region on which the term is added. If it is not specified, it is added on the whole
mesh. Return the brick index in the model.

ind = gf_model_set(model M, 'add finite strain
elastoplasticity brick', mesh_im mim , string lawname,
string unknowns_type [, string varnames, ...] [, string
params, ...] [, int region = -1])

Add a finite strain elastoplasticity brick to the model. For the moment

108 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

there is only one supported law defined through <literal>lawname</literal>
as “Simo_Miehe”. This law supports to possibilities of unknown variables
to solve for defined by means of <literal>unknowns_type</literal> set to ei-
ther ‘DISPLACEMENT_AND_PLASTIC_MULTIPLIER’ (integer value 1) or
‘DISPLACEMENT_AND_PLASTIC_MULTIPLIER_AND_PRESSURE’ (in-
teger value 3). The “Simo_Miehe” law expects as <literal>varnames</literal>
a set of the following names that have to be defined as variables in the model:

• the displacement variable which has to be defined as an unknown,

• the plastic multiplier which has also defined as an unknown,

• optionally the pressure variable for a mixed
displacement-pressure formulation for ‘DISPLACE-
MENT_AND_PLASTIC_MULTIPLIER_AND_PRESSURE’ as <lit-
eral>unknowns_type</literal>,

• the name of a (scalar) fem_data or im_data field that holds the plastic strain
at the previous time step, and

• the name of a fem_data or im_data field that holds all non-repeated compo-
nents of the inverse of the plastic right Cauchy-Green tensor at the previous
time step (it has to be a 4 element vector for plane strain 2D problems and a
6 element vector for 3D problems).

The “Simo_Miehe” law also expects as <literal>params</literal> a set of the
following three parameters:

• an expression for the initial bulk modulus K,

• an expression for the initial shear modulus G,

• the name of a user predefined function that decribes the yield limit as a
function of the hardening variable (both the yield limit and the hardening
variable values are assumed to be Frobenius norms of appropriate stress and
strain tensors, respectively).

As usual, <literal>region</literal> is an optional mesh region on which the term
is added. If it is not specified, it is added on the whole mesh. Return the brick
index in the model.

ind = gf_model_set(model M, 'add nonlinear incompressibility
brick', mesh_im mim, string varname, string
multname_pressure[, int region])

Add a nonlinear incompressibility condition on <literal>variable</literal> (for
large strain elasticity). <literal>multname_pressure</literal> is a variable which
represent the pressure. Be aware that an inf-sup condition between the finite ele-
ment method describing the pressure and the primal variable has to be satisfied.
<literal>region</literal> is an optional mesh region on which the term is added.
If it is not specified, it is added on the whole mesh. Return the brick index in the
model.

ind = gf_model_set(model M, 'add finite strain
incompressibility brick', mesh_im mim, string varname,
string multname_pressure[, int region])

5.39. gf_model_set 109

Scilab Interface, Release 5.4.1

Add a finite strain incompressibility condition on <literal>variable</literal> (for
large strain elasticity). <literal>multname_pressure</literal> is a variable which
represent the pressure. Be aware that an inf-sup condition between the finite ele-
ment method describing the pressure and the primal variable has to be satisfied.
<literal>region</literal> is an optional mesh region on which the term is added.
If it is not specified, it is added on the whole mesh. Return the brick index in the
model. This brick is equivalent to the <literal></literal>nonlinear incompress-
ibility brick<literal></literal> but uses the high-level generic assembly adding
the term <literal></literal>p*(1-Det(Id(meshdim)+Grad_u))<literal></literal>
if <literal></literal>p<literal></literal> is the multiplier and <lit-
eral></literal>u<literal></literal> the variable which represent the displacement.

ind = gf_model_set(model M, 'add bilaplacian brick', mesh_im
mim, string varname, string dataname [, int region])

Add a bilaplacian brick on the variable <literal>varname</literal> and on
the mesh region <literal>region</literal>. This represent a term <la-
tex style=”text”><![CDATA[Delta(D Delta u)]]></latex>. where <latex
style=”text”><![CDATA[D(x)]]></latex> is a coefficient determined by <lit-
eral>dataname</literal> which could be constant or described on a f.e.m. The
corresponding weak form is <latex style=”text”><![CDATA[int D(x)Delta u(x)
Delta v(x) dx]]></latex>. Return the brick index in the model.

ind = gf_model_set(model M, 'add Kirchhoff-Love plate
brick', mesh_im mim, string varname, string dataname_D,
string dataname_nu [, int region])

Add a bilaplacian brick on the variable <literal>varname</literal> and
on the mesh region <literal>region</literal>. This represent a term
<latex style=”text”><![CDATA[Delta(D Delta u)]]></latex> where <latex
style=”text”><![CDATA[D(x)]]></latex> is a the flexion modulus determined
by <literal>dataname_D</literal>. The term is integrated by part following a
Kirchhoff-Love plate model with <literal>dataname_nu</literal> the poisson ra-
tio. Return the brick index in the model.

ind = gf_model_set(model M, 'add normal derivative source
term brick', mesh_im mim, string varname, string dataname,
int region)

Add a normal derivative source term brick <latex style=”text”><![CDATA[F =
int b.partial_n v]]></latex> on the variable <literal>varname</literal> and the
mesh region <literal>region</literal>.

Update the right hand side of the linear system. <literal>dataname</literal>
represents <literal>b</literal> and <literal>varname</literal> represents <lit-
eral>v</literal>. Return the brick index in the model.

ind = gf_model_set(model M, 'add Kirchhoff-Love Neumann
term brick', mesh_im mim, string varname, string dataname_M,
string dataname_divM, int region)

Add a Neumann term brick for Kirchhoff-Love model on the variable <lit-
eral>varname</literal> and the mesh region <literal>region</literal>. <lit-
eral>dataname_M</literal> represents the bending moment tensor and <lit-
eral>dataname_divM</literal> its divergence. Return the brick index in the
model.

110 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

ind = gf_model_set(model M, 'add normal derivative Dirichlet
condition with multipliers', mesh_im mim, string varname,
mult_description, int region [, string dataname, int
R_must_be_derivated])

Add a Dirichlet condition on the normal derivative of the variable <lit-
eral>varname</literal> and on the mesh region <literal>region</literal> (which
should be a boundary). The general form is <latex style=”text”><![CDATA[int
partial_n u(x)v(x) = int r(x)v(x) forall v]]></latex> where <latex
style=”text”><![CDATA[r(x)]]></latex> is the right hand side for
the Dirichlet condition (0 for homogeneous conditions) and <latex
style=”text”><![CDATA[v]]></latex> is in a space of multipliers defined
by <literal>mult_description</literal>. If <literal>mult_description</literal> is
a string this is assumed to be the variable name corresponding to the multiplier
(which should be first declared as a multiplier variable on the mesh region in
the model). If it is a finite element method (mesh_fem object) then a multiplier
variable will be added to the model and build on this finite element method (it
will be restricted to the mesh region <literal>region</literal> and eventually
some conflicting dofs with some other multiplier variables will be suppressed).
If it is an integer, then a multiplier variable will be added to the model and build
on a classical finite element of degree that integer. <literal>dataname</literal> is
an optional parameter which represents the right hand side of the Dirichlet con-
dition. If <literal>R_must_be_derivated</literal> is set to <literal>true</literal>
then the normal derivative of <literal>dataname</literal> is considered. Return
the brick index in the model.

ind = gf_model_set(model M, 'add normal derivative
Dirichlet condition with penalization', mesh_im mim, string
varname, scalar coeff, int region [, string dataname, int
R_must_be_derivated])

Add a Dirichlet condition on the normal derivative of the variable <lit-
eral>varname</literal> and on the mesh region <literal>region</literal> (which
should be a boundary). The general form is <latex style=”text”><![CDATA[int
partial_n u(x)v(x) = int r(x)v(x) forall v]]></latex> where <latex
style=”text”><![CDATA[r(x)]]></latex> is the right hand side for the
Dirichlet condition (0 for homogeneous conditions). The penalization co-
efficient is initially <literal>coeff</literal> and will be added to the data
of the model. It can be changed with the command gf_model_set(model
M, ‘change penalization coeff’). <literal>dataname</literal> is an optional
parameter which represents the right hand side of the Dirichlet condition. If
<literal>R_must_be_derivated</literal> is set to <literal>true</literal> then the
normal derivative of <literal>dataname</literal> is considered. Return the brick
index in the model.

ind = gf_model_set(model M, 'add Mindlin Reissner plate
brick', mesh_im mim, mesh_im mim_reduced, string varname_u3,
string varname_theta , string param_E, string param_nu,
string param_epsilon, string param_kappa [,int variant [,
int region]])

Add a term corresponding to the classical Reissner-Mindlin plate model
for which <literal>varname_u3</literal> is the transverse displacement, <lit-
eral>varname_theta</literal> the rotation of fibers normal to the mid-

5.39. gf_model_set 111

Scilab Interface, Release 5.4.1

plane, ‘param_E’ the Young Modulus, <literal>param_nu</literal> the
poisson ratio, <literal>param_epsilon</literal> the plate thickness, <lit-
eral>param_kappa</literal> the shear correction factor. Note that since this brick
uses the high level generic assembly language, the parameter can be regular ex-
pression of this language. There are three variants. <literal>variant = 0</literal>
corresponds to the an unreduced formulation and in that case only the integra-
tion method <literal>mim</literal> is used. Practically this variant is not usable
since it is subject to a strong locking phenomenon. <literal>variant = 1</lit-
eral> corresponds to a reduced integration where <literal>mim</literal> is used
for the rotation term and <literal>mim_reduced</literal> for the transverse shear
term. <literal>variant = 2</literal> (default) corresponds to the projection onto
a rotated RT0 element of the transverse shear term. For the moment, this is
adapted to quadrilateral only (because it is not sufficient to remove the locking
phenomenon on triangle elements). Note also that if you use high order elements,
the projection on RT0 will reduce the order of the approximation. Returns the
brick index in the model.

ind = gf_model_set(model M, 'add enriched Mindlin Reissner
plate brick', mesh_im mim, mesh_im mim_reduced1, mesh_im
mim_reduced2, string varname_ua, string varname_theta,
string varname_u3, string varname_theta3 , string param_E,
string param_nu, string param_epsilon [,int variant [, int
region]])

Add a term corresponding to the enriched Reissner-Mindlin plate model
for which <literal>varname_ua</literal> is the membrane displace-
ments, <literal>varname_u3</literal> is the transverse displacement, <lit-
eral>varname_theta</literal> the rotation of fibers normal to the midplane,
<literal>varname_theta3</literal> the pinching, ‘param_E’ the Young Modulus,
<literal>param_nu</literal> the poisson ratio, <literal>param_epsilon</literal>
the plate thickness. Note that since this brick uses the high level generic
assembly language, the parameter can be regular expression of this language.
There are four variants. <literal>variant = 0</literal> corresponds to the an
unreduced formulation and in that case only the integration method <lit-
eral>mim</literal> is used. Practically this variant is not usable since it is
subject to a strong locking phenomenon. <literal>variant = 1</literal> corre-
sponds to a reduced integration where <literal>mim</literal> is used for the
rotation term and <literal>mim_reduced1</literal> for the transverse shear term
and <literal>mim_reduced2</literal> for the pinching term. <literal>variant =
2</literal> (default) corresponds to the projection onto a rotated RT0 element of
the transverse shear term and a reduced integration for the pinching term. For
the moment, this is adapted to quadrilateral only (because it is not sufficient to
remove the locking phenomenon on triangle elements). Note also that if you
use high order elements, the projection on RT0 will reduce the order of the
approximation. <literal>variant = 3</literal> corresponds to the projection onto
a rotated RT0 element of the transverse shear term and the projection onto P0
element of the pinching term. For the moment, this is adapted to quadrilateral
only (because it is not sufficient to remove the locking phenomenon on triangle
elements). Note also that if you use high order elements, the projection on
RT0 will reduce the order of the approximation. Returns the brick index in the
model.

ind = gf_model_set(model M, 'add mass brick', mesh_im mim,

112 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

string varname[, string dataexpr_rho[, int region]])

Add mass term to the model relatively to the variable <literal>varname</literal>.
If specified, the data <literal>dataexpr_rho</literal> is the density (1 if omitted).
<literal>region</literal> is an optional mesh region on which the term is added.
If it is not specified, it is added on the whole mesh. Return the brick index in the
model.

ind = gf_model_set(model M, 'add lumped mass for first order
brick', mesh_im mim, string varname[, string dataexpr_rho[,
int region]])

Add lumped mass for first order term to the model relatively to the variable
<literal>varname</literal>. If specified, the data <literal>dataexpr_rho</literal>
is the density (1 if omitted). <literal>region</literal> is an optional mesh region
on which the term is added. If it is not specified, it is added on the whole mesh.
Return the brick index in the model.

gf_model_set(model M, 'shift variables for time
integration')

Function used to shift the variables of a model to the data corresponding of ther
value on the previous time step for time integration schemes. For each variable
for which a time integration scheme has been declared, the scheme is called to
perform the shift. This function has to be called between two time steps.

gf_model_set(model M, 'perform init time derivative', scalar
ddt)

By calling this function, indicates that the next solve will compute the solution
for a (very) small time step <literal>ddt</literal> in order to initalize the data
corresponding to the derivatives needed by time integration schemes (mainly the
initial time derivative for order one in time problems and the second order time
derivative for second order in time problems). The next solve will not change
the value of the variables.

gf_model_set(model M, 'set time step', scalar dt)

Set the value of the time step to <literal>dt</literal>. This value can be change
from a step to another for all one-step schemes (i.e. for the moment to all pro-
posed time integration schemes).

gf_model_set(model M, 'set time', scalar t)

Set the value of the data <literal>t</literal> corresponding to the current time to
<literal>t</literal>.

gf_model_set(model M, 'add theta method for first order',
string varname, scalar theta)

Attach a theta method for the time discretization of the variable <lit-
eral>varname</literal>. Valid only if there is at most first order time derivative
of the variable.

gf_model_set(model M, 'add theta method for second order',
string varname, scalar theta)

5.39. gf_model_set 113

Scilab Interface, Release 5.4.1

Attach a theta method for the time discretization of the variable <lit-
eral>varname</literal>. Valid only if there is at most second order time deriva-
tive of the variable.

gf_model_set(model M, 'add Newmark scheme', string varname,
scalar beta, scalar gamma)

Attach a theta method for the time discretization of the variable <lit-
eral>varname</literal>. Valid only if there is at most second order time deriva-
tive of the variable.

gf_model_set(model M, 'add_Houbolt_scheme', string varname)

Attach a Houbolt method for the time discretization of the variable <lit-
eral>varname</literal>. Valid only if there is at most second order time deriva-
tive of the variable

gf_model_set(model M, 'disable bricks', ivec bricks_indices)

Disable a brick (the brick will no longer participate to the building of the tangent
linear system).

gf_model_set(model M, 'enable bricks', ivec bricks_indices)

Enable a disabled brick.

gf_model_set(model M, 'disable variable', string varname)

Disable a variable for a solve (and its attached multipliers). The next solve will
operate only on the remaining variables. This allows to solve separately different
parts of a model. If there is a strong coupling of the variables, a fixed point
strategy can the be used.

gf_model_set(model M, 'enable variable', string varname)

Enable a disabled variable (and its attached multipliers).

gf_model_set(model M, 'first iter')

To be executed before the first iteration of a time integration scheme.

gf_model_set(model M, 'next iter')

To be executed at the end of each iteration of a time integration scheme.

ind = gf_model_set(model M, 'add basic contact
brick', string varname_u, string multname_n[, string
multname_t], string dataname_r, spmat BN[, spmat BT,
string dataname_friction_coeff][, string dataname_gap[,
string dataname_alpha[, int augmented_version[, string
dataname_gamma, string dataname_wt]]])

Add a contact with or without friction brick to the model. If U is the vector
of degrees of freedom on which the unilateral constraint is applied, the matrix
<literal>BN</literal> have to be such that this constraint is defined by <latex
style=”text”><![CDATA[B_N U le 0]]></latex>. A friction condition can be
considered by adding the three parameters <literal>multname_t</literal>, <lit-
eral>BT</literal> and <literal>dataname_friction_coeff</literal>. In this case,
the tangential displacement is <latex style=”text”><![CDATA[B_T U]]></latex>

114 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

and the matrix <literal>BT</literal> should have as many rows as <lit-
eral>BN</literal> multiplied by <latex style=”text”><![CDATA[d-1]]></latex>
where <latex style=”text”><![CDATA[d]]></latex> is the domain dimension. In
this case also, <literal>dataname_friction_coeff</literal> is a data which repre-
sents the coefficient of friction. It can be a scalar or a vector representing a
value on each contact condition. The unilateral constraint is prescribed thank to
a multiplier <literal>multname_n</literal> whose dimension should be equal to
the number of rows of <literal>BN</literal>. If a friction condition is added, it
is prescribed with a multiplier <literal>multname_t</literal> whose dimension
should be equal to the number of rows of <literal>BT</literal>. The augmen-
tation parameter <literal>r</literal> should be chosen in a range of acceptabe
values (see Getfem user documentation). <literal>dataname_gap</literal> is an
optional parameter representing the initial gap. It can be a single value or a
vector of value. <literal>dataname_alpha</literal> is an optional homogeniza-
tion parameter for the augmentation parameter (see Getfem user documentation).
The parameter <literal>augmented_version</literal> indicates the augmentation
strategy : 1 for the non-symmetric Alart-Curnier augmented Lagrangian, 2 for
the symmetric one (except for the coupling between contact and Coulomb fric-
tion), 3 for the unsymmetric method with augmented multipliers, 4 for the un-
symmetric method with augmented multipliers and De Saxce projection.

ind = gf_model_set(model M, 'add basic contact brick two
deformable bodies', string varname_u1, string varname_u2,
string multname_n, string dataname_r, spmat BN1, spmat
BN2[, string dataname_gap[, string dataname_alpha[, int
augmented_version]]])

Add a frictionless contact condition to the model between two deformable
bodies. If U1, U2 are the vector of degrees of freedom on which the
unilateral constraint is applied, the matrices <literal>BN1</literal> and
<literal>BN2</literal> have to be such that this condition is defined by
$B_{N1} U_1 B_{N2} U_2 + le gap$. The constraint is prescribed thank
to a multiplier <literal>multname_n</literal> whose dimension should be
equal to the number of lines of <literal>BN</literal>. The augmentation
parameter <literal>r</literal> should be chosen in a range of acceptabe
values (see Getfem user documentation). <literal>dataname_gap</literal>
is an optional parameter representing the initial gap. It can be a single
value or a vector of value. <literal>dataname_alpha</literal> is an optional
homogenization parameter for the augmentation parameter (see Getfem
user documentation). The parameter <literal>aug_version</literal> indi-
cates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric
method with augmented multiplier.

gf_model_set(model M, 'contact brick set BN', int indbrick,
spmat BN)

Can be used to set the BN matrix of a basic contact/friction brick.

gf_model_set(model M, 'contact brick set BT', int indbrick,
spmat BT)

Can be used to set the BT matrix of a basic contact with friction brick.

ind = gf_model_set(model M, 'add nodal contact with rigid

5.39. gf_model_set 115

Scilab Interface, Release 5.4.1

obstacle brick', mesh_im mim, string varname_u, string
multname_n[, string multname_t], string dataname_r[, string
dataname_friction_coeff], int region, string obstacle[, int
augmented_version])

Add a contact with or without friction condition with a rigid obstacle to the
model. The condition is applied on the variable <literal>varname_u</literal>
on the boundary corresponding to <literal>region</literal>. The rigid obstacle
should be described with the string <literal>obstacle</literal> being a signed
distance to the obstacle. This string should be an expression where the coor-
dinates are ‘x’, ‘y’ in 2D and ‘x’, ‘y’, ‘z’ in 3D. For instance, if the rigid ob-
stacle correspond to <latex style=”text”><![CDATA[z le 0]]></latex>, the cor-
responding signed distance will be simply “z”. <literal>multname_n</literal>
should be a fixed size variable whose size is the number of degrees of free-
dom on boundary <literal>region</literal>. It represents the contact equiva-
lent nodal forces. In order to add a friction condition one has to add the <lit-
eral>multname_t</literal> and <literal>dataname_friction_coeff</literal> pa-
rameters. <literal>multname_t</literal> should be a fixed size variable whose
size is the number of degrees of freedom on boundary <literal>region</literal>
multiplied by <latex style=”text”><![CDATA[d-1]]></latex> where <latex
style=”text”><![CDATA[d]]></latex> is the domain dimension. It repre-
sents the friction equivalent nodal forces. The augmentation parameter <lit-
eral>r</literal> should be chosen in a range of acceptabe values (close to the
Young modulus of the elastic body, see Getfem user documentation). <lit-
eral>dataname_friction_coeff</literal> is the friction coefficient. It could be a
scalar or a vector of values representing the friction coefficient on each con-
tact node. The parameter <literal>augmented_version</literal> indicates the
augmentation strategy : 1 for the non-symmetric Alart-Curnier augmented La-
grangian, 2 for the symmetric one (except for the coupling between contact and
Coulomb friction), 3 for the new unsymmetric method. Basically, this brick
compute the matrix BN and the vectors gap and alpha and calls the basic contact
brick.

ind = gf_model_set(model M, 'add contact with rigid
obstacle brick', mesh_im mim, string varname_u, string
multname_n[, string multname_t], string dataname_r[, string
dataname_friction_coeff], int region, string obstacle[, int
augmented_version])

DEPRECATED FUNCTION. Use ‘add nodal contact with rigid obstacle brick’
instead.

ind = gf_model_set(model M, 'add integral contact with rigid
obstacle brick', mesh_im mim, string varname_u, string
multname, string dataname_obstacle, string dataname_r [,
string dataname_friction_coeff], int region [, int option
[, string dataname_alpha [, string dataname_wt [, string
dataname_gamma [, string dataname_vt]]]]])

Add a contact with or without friction condition with a rigid obstacle to
the model. This brick adds a contact which is defined in an integral way.
It is the direct approximation of an augmented Lagrangian formulation (see
Getfem user documentation) defined at the continuous level. The advan-
tage is a better scalability: the number of Newton iterations should be more

116 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

or less independent of the mesh size. The contact condition is applied on
the variable <literal>varname_u</literal> on the boundary corresponding to
<literal>region</literal>. The rigid obstacle should be described with the
data <literal>dataname_obstacle</literal> being a signed distance to the ob-
stacle (interpolated on a finite element method). <literal>multname</literal>
should be a fem variable representing the contact stress. An inf-sup condi-
tion beetween <literal>multname</literal> and <literal>varname_u</literal> is
required. The augmentation parameter <literal>dataname_r</literal> should
be chosen in a range of acceptabe values. The optional parameter <lit-
eral>dataname_friction_coeff</literal> is the friction coefficient which could
be constant or defined on a finite element method. Possible values for
<literal>option</literal> is 1 for the non-symmetric Alart-Curnier augmented
Lagrangian method, 2 for the symmetric one, 3 for the non-symmetric
Alart-Curnier method with an additional augmentation and 4 for a new un-
symmetric method. The default value is 1. In case of contact with
friction, <literal>dataname_alpha</literal> and <literal>dataname_wt</literal>
are optional parameters to solve evolutionary friction problems. <lit-
eral>dataname_gamma</literal> and <literal>dataname_vt</literal> represent
optional data for adding a parameter-dependent sliding velocity to the friction
condition.

ind = gf_model_set(model M, 'add penalized contact with
rigid obstacle brick', mesh_im mim, string varname_u,
string dataname_obstacle, string dataname_r [, string
dataname_coeff], int region [, int option, string
dataname_lambda, [, string dataname_alpha [, string
dataname_wt]]])

Add a penalized contact with or without friction condition with a rigid obstacle to
the model. The condition is applied on the variable <literal>varname_u</literal>
on the boundary corresponding to <literal>region</literal>. The rigid obstacle
should be described with the data <literal>dataname_obstacle</literal> being a
signed distance to the obstacle (interpolated on a finite element method). The
penalization parameter <literal>dataname_r</literal> should be chosen large
enough to prescribe approximate non-penetration and friction conditions but not
too large not to deteriorate too much the conditionning of the tangent system.
<literal>dataname_lambda</literal> is an optional parameter used if option is 2.
In that case, the penalization term is shifted by lambda (this allows the use of an
Uzawa algorithm on the corresponding augmented Lagrangian formulation)

ind = gf_model_set(model M, 'add Nitsche contact with
rigid obstacle brick', mesh_im mim, string varname, string
Neumannterm, string dataname_obstacle, string gamma0name,
int region[, scalar theta[, string dataname_friction_coeff[,
string dataname_alpha, string dataname_wt]]])

Adds a contact condition with or without Coulomb friction on the variable
<literal>varname</literal> and the mesh boundary <literal>region</literal>.
The contact condition is prescribed with Nitsche’s method. The rigid ob-
stacle should be described with the data <literal>dataname_obstacle</literal>
being a signed distance to the obstacle (interpolated on a finite element
method). <literal>gamma0name</literal> is the Nitsche’s method parameter.
<literal>theta</literal> is a scalar value which can be positive or negative. <lit-

5.39. gf_model_set 117

Scilab Interface, Release 5.4.1

eral>theta = 1</literal> corresponds to the standard symmetric method which
is conditionally coercive for <literal>gamma0</literal> small. <literal>theta =
-1</literal> corresponds to the skew-symmetric method which is inconditionally
coercive. <literal>theta = 0</literal> is the simplest method for which the second
derivative of the Neumann term is not necessary. The optional parameter <lit-
eral>dataname_friction_coeff</literal> is the friction coefficient which could be
constant or defined on a finite element method. CAUTION: This brick has to be
added in the model after all the bricks corresponding to partial differential terms
having a Neumann term. Moreover, This brick can only be applied to bricks
declaring their Neumann terms. Returns the brick index in the model.

ind = gf_model_set(model M, 'add Nitsche midpoint
contact with rigid obstacle brick', mesh_im mim, string
varname, string Neumannterm, string Neumannterm_wt,
string dataname_obstacle, string gamma0name, int region,
scalar theta, string dataname_friction_coeff, string
dataname_alpha, string dataname_wt)

EXPERIMENTAL BRICK: for midpoint scheme only !! Adds a contact condi-
tion with or without Coulomb friction on the variable <literal>varname</literal>
and the mesh boundary <literal>region</literal>. The contact condition is pre-
scribed with Nitsche’s method. The rigid obstacle should be described with the
data <literal>dataname_obstacle</literal> being a signed distance to the obsta-
cle (interpolated on a finite element method). <literal>gamma0name</literal>
is the Nitsche’s method parameter. <literal>theta</literal> is a scalar value
which can be positive or negative. <literal>theta = 1</literal> corre-
sponds to the standard symmetric method which is conditionally coercive
for <literal>gamma0</literal> small. <literal>theta = -1</literal> corresponds
to the skew-symmetric method which is inconditionally coercive. <lit-
eral>theta = 0</literal> is the simplest method for which the second deriva-
tive of the Neumann term is not necessary. The optional parameter <lit-
eral>dataname_friction_coeff</literal> is the friction coefficient which could be
constant or defined on a finite element method. Returns the brick index in the
model.

ind = gf_model_set(model M, 'add Nitsche fictitious
domain contact brick', mesh_im mim, string varname1,
string varname2, string dataname_d1, string
dataname_d2, string gamma0name [, scalar theta[, string
dataname_friction_coeff[, string dataname_alpha, string
dataname_wt1,string dataname_wt2]]])

Adds a contact condition with or without Coulomb friction between two bod-
ies in a fictitious domain. The contact condition is applied on the vari-
able <literal>varname_u1</literal> corresponds with the first and slave body
with Nitsche’s method and on the variable <literal>varname_u2</literal> cor-
responds with the second and master body with Nitsche’s method. The con-
tact condition is evaluated on the fictitious slave boundary. The first body
should be described by the level-set <literal>dataname_d1</literal> and the sec-
ond body should be described by the level-set <literal>dataname_d2</literal>.
<literal>gamma0name</literal> is the Nitsche’s method parameter. <lit-
eral>theta</literal> is a scalar value which can be positive or negative. <lit-
eral>theta = 1</literal> corresponds to the standard symmetric method which

118 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

is conditionally coercive for <literal>gamma0</literal> small. <literal>theta =
-1</literal> corresponds to the skew-symmetric method which is inconditionally
coercive. <literal>theta = 0</literal> is the simplest method for which the second
derivative of the Neumann term is not necessary. The optional parameter <lit-
eral>dataname_friction_coeff</literal> is the friction coefficient which could be
constant or defined on a finite element method. CAUTION: This brick has to be
added in the model after all the bricks corresponding to partial differential terms
having a Neumann term. Moreover, This brick can only be applied to bricks
declaring their Neumann terms. Returns the brick index in the model.

ind = gf_model_set(model M, 'add nodal contact between
nonmatching meshes brick', mesh_im mim1[, mesh_im
mim2], string varname_u1[, string varname_u2], string
multname_n[, string multname_t], string dataname_r[, string
dataname_fr], int rg1, int rg2[, int slave1, int slave2, int
augmented_version])

Add a contact with or without friction condition between two faces of
one or two elastic bodies. The condition is applied on the variable <lit-
eral>varname_u1</literal> or the variables <literal>varname_u1</literal> and
<literal>varname_u2</literal> depending if a single or two distinct displace-
ment fields are given. Integers <literal>rg1</literal> and <literal>rg2</literal>
represent the regions expected to come in contact with each other. In the sin-
gle displacement variable case the regions defined in both <literal>rg1</literal>
and <literal>rg2</literal> refer to the variable <literal>varname_u1</literal>.
In the case of two displacement variables, <literal>rg1</literal> refers
to <literal>varname_u1</literal> and <literal>rg2</literal> refers to <lit-
eral>varname_u2</literal>. <literal>multname_n</literal> should be a fixed
size variable whose size is the number of degrees of freedom on those re-
gions among the ones defined in <literal>rg1</literal> and <literal>rg2</literal>
which are characterized as “slaves”. It represents the contact equivalent nodal
normal forces. <literal>multname_t</literal> should be a fixed size variable
whose size corresponds to the size of <literal>multname_n</literal> multi-
plied by qdim - 1 . It represents the contact equivalent nodal tangent (fric-
tional) forces. The augmentation parameter <literal>r</literal> should be cho-
sen in a range of acceptabe values (close to the Young modulus of the elas-
tic body, see Getfem user documentation). The friction coefficient stored in
the parameter <literal>fr</literal> is either a single value or a vector of the
same size as <literal>multname_n</literal>. The optional parameters <lit-
eral>slave1</literal> and <literal>slave2</literal> declare if the regions de-
fined in <literal>rg1</literal> and <literal>rg2</literal> are correspondingly
considered as “slaves”. By default <literal>slave1</literal> is true and <lit-
eral>slave2</literal> is false, i.e. <literal>rg1</literal> contains the slave
surfaces, while ‘rg2’ the master surfaces. Preferrably only one of <lit-
eral>slave1</literal> and <literal>slave2</literal> is set to true. The parameter
<literal>augmented_version</literal> indicates the augmentation strategy : 1 for
the non-symmetric Alart-Curnier augmented Lagrangian, 2 for the symmetric
one (except for the coupling between contact and Coulomb friction), 3 for the
new unsymmetric method. Basically, this brick computes the matrices BN and
BT and the vectors gap and alpha and calls the basic contact brick.

ind = gf_model_set(model M, 'add nonmatching meshes contact
brick', mesh_im mim1[, mesh_im mim2], string varname_u1[,

5.39. gf_model_set 119

Scilab Interface, Release 5.4.1

string varname_u2], string multname_n[, string multname_t],
string dataname_r[, string dataname_fr], int rg1, int rg2[,
int slave1, int slave2, int augmented_version])

DEPRECATED FUNCTION. Use ‘add nodal contact between nonmatching
meshes brick’ instead.

ind = gf_model_set(model M, 'add integral contact between
nonmatching meshes brick', mesh_im mim, string varname_u1,
string varname_u2, string multname, string dataname_r [,
string dataname_friction_coeff], int region1, int region2 [,
int option [, string dataname_alpha [, string dataname_wt1 ,
string dataname_wt2]]])

Add a contact with or without friction condition between nonmatching meshes
to the model. This brick adds a contact which is defined in an integral way.
It is the direct approximation of an augmented agrangian formulation (see Get-
fem user documentation) defined at the continuous level. The advantage should
be a better scalability: the number of Newton iterations should be more or
less independent of the mesh size. The condition is applied on the variables
<literal>varname_u1</literal> and <literal>varname_u2</literal> on the bound-
aries corresponding to <literal>region1</literal> and <literal>region2</literal>.
<literal>multname</literal> should be a fem variable representing the con-
tact stress for the frictionless case and the contact and friction stress for the
case with friction. An inf-sup condition between <literal>multname</literal>
and <literal>varname_u1</literal> and <literal>varname_u2</literal> is re-
quired. The augmentation parameter <literal>dataname_r</literal> should
be chosen in a range of acceptable values. The optional parameter <lit-
eral>dataname_friction_coeff</literal> is the friction coefficient which could
be constant or defined on a finite element method on the same mesh as <lit-
eral>varname_u1</literal>. Possible values for <literal>option</literal> is 1
for the non-symmetric Alart-Curnier augmented Lagrangian method, 2 for the
symmetric one, 3 for the non-symmetric Alart-Curnier method with an addi-
tional augmentation and 4 for a new unsymmetric method. The default value
is 1. In case of contact with friction, <literal>dataname_alpha</literal>, <lit-
eral>dataname_wt1</literal> and <literal>dataname_wt2</literal> are optional
parameters to solve evolutionary friction problems.

ind = gf_model_set(model M, 'add penalized contact
between nonmatching meshes brick', mesh_im mim, string
varname_u1, string varname_u2, string dataname_r [, string
dataname_coeff], int region1, int region2 [, int option [,
string dataname_lambda, [, string dataname_alpha [, string
dataname_wt1, string dataname_wt2]]]])

Add a penalized contact condition with or without friction between nonmatch-
ing meshes to the model. The condition is applied on the variables <lit-
eral>varname_u1</literal> and <literal>varname_u2</literal> on the boundaries
corresponding to <literal>region1</literal> and <literal>region2</literal>. The
penalization parameter <literal>dataname_r</literal> should be chosen large
enough to prescribe approximate non-penetration and friction conditions but
not too large not to deteriorate too much the conditionning of the tangent
system. The optional parameter <literal>dataname_friction_coeff</literal> is
the friction coefficient which could be constant or defined on a finite el-

120 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

ement method on the same mesh as <literal>varname_u1</literal>. <lit-
eral>dataname_lambda</literal> is an optional parameter used if option is 2.
In that case, the penalization term is shifted by lambda (this allows the use
of an Uzawa algorithm on the corresponding augmented Lagrangian formula-
tion) In case of contact with friction, <literal>dataname_alpha</literal>, <lit-
eral>dataname_wt1</literal> and <literal>dataname_wt2</literal> are optional
parameters to solve evolutionary friction problems.

ind = gf_model_set(model M, 'add integral large sliding
contact brick raytracing', string dataname_r, scalar
release_distance, [, string dataname_fr[, string
dataname_alpha[, int version]]])

Adds a large sliding contact with friction brick to the model. This brick is able
to deal with self-contact, contact between several deformable bodies and con-
tact with rigid obstacles. It uses the high-level generic assembly. It adds to the
model a raytracing_interpolate_transformation object. For each slave boundary
a multiplier variable should be defined. The release distance should be deter-
mined with care (generally a few times a mean element size, and less than the
thickness of the body). Initially, the brick is added with no contact boundaries.
The contact boundaries and rigid bodies are added with special functions. <lit-
eral>version</literal> is 0 (the default value) for the non-symmetric version and
1 for the more symmetric one (not fully symmetric even without friction).

gf_model_set(model M, 'add rigid obstacle to large sliding
contact brick', int indbrick, string expr, int N)

Adds a rigid obstacle to an existing large sliding contact with friction brick. <lit-
eral>expr</literal> is an expression using the high-level generic assembly lan-
guage (where <literal>x</literal> is the current point n the mesh) which should
be a signed distance to the obstacle. <literal>N</literal> is the mesh dimension.

gf_model_set(model M, 'add master contact boundary to large
sliding contact brick', int indbrick, mesh_im mim, int
region, string dispname[, string wname])

Adds a master contact boundary to an existing large sliding contact with friction
brick.

gf_model_set(model M, 'add slave contact boundary to large
sliding contact brick', int indbrick, mesh_im mim, int
region, string dispname, string lambdaname[, string wname])

Adds a slave contact boundary to an existing large sliding contact with friction
brick.

gf_model_set(model M, 'add master slave contact boundary to
large sliding contact brick', int indbrick, mesh_im mim, int
region, string dispname, string lambdaname[, string wname])

Adds a contact boundary to an existing large sliding contact with friction brick
which is both master and slave (allowing the self-contact).

ind = gf_model_set(model M, 'add Nitsche large sliding
contact brick raytracing', bool unbiased_version, string
dataname_r, scalar release_distance[, string dataname_fr[,
string dataname_alpha[, int version]]])

5.39. gf_model_set 121

Scilab Interface, Release 5.4.1

Adds a large sliding contact with friction brick to the model based on the
Nitsche’s method. This brick is able to deal with self-contact, contact between
several deformable bodies and contact with rigid obstacles. It uses the high-level
generic assembly. It adds to the model a raytracing_interpolate_transformation
object. “unbiased_version” refers to the version of Nische’s method to be used.
(unbiased or biased one). For each slave boundary a material law should be de-
fined as a function of the dispacement variable on this boundary. The release
distance should be determined with care (generally a few times a mean element
size, and less than the thickness of the body). Initially, the brick is added with
no contact boundaries. The contact boundaries and rigid bodies are added with
special functions. <literal>version</literal> is 0 (the default value) for the non-
symmetric version and 1 for the more symmetric one (not fully symmetric even
without friction).

gf_model_set(model M, 'add rigid obstacle to Nitsche large
sliding contact brick', int indbrick, string expr, int N)

Adds a rigid obstacle to an existing large sliding contact with friction brick. <lit-
eral>expr</literal> is an expression using the high-level generic assembly lan-
guage (where <literal>x</literal> is the current point n the mesh) which should
be a signed distance to the obstacle. <literal>N</literal> is the mesh dimension.

gf_model_set(model M, 'add master contact boundary to biased
Nitsche large sliding contact brick', int indbrick, mesh_im
mim, int region, string dispname[, string wname])

Adds a master contact boundary to an existing biased Nitsche’s large sliding
contact with friction brick.

gf_model_set(model M, 'add slave contact boundary to biased
Nitsche large sliding contact brick', int indbrick, mesh_im
mim, int region, string dispname, string lambdaname[, string
wname])

Adds a slave contact boundary to an existing biased Nitsche’s large sliding con-
tact with friction brick.

gf_model_set(model M, 'add contact boundary to unbiased
Nitsche large sliding contact brick', int indbrick, mesh_im
mim, int region, string dispname, string lambdaname[, string
wname])

Adds a contact boundary to an existing unbiased Nitschelarge sliding contact
with friction brick which is both master and slave.

5.40 gf_poly

Synopsis

gf_poly(poly P, 'print')
gf_poly(poly P, 'product')

Description :

Performs various operations on the polynom POLY.

122 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Command list :

gf_poly(poly P, 'print')

Prints the content of P.

gf_poly(poly P, 'product')

To be done . . . !

5.41 gf_precond

Synopsis

PC = gf_precond('identity')
PC = gf_precond('cidentity')
PC = gf_precond('diagonal', vec D)
PC = gf_precond('ildlt', spmat m)
PC = gf_precond('ilu', spmat m)
PC = gf_precond('ildltt', spmat m[, int fillin[, scalar threshold]])
PC = gf_precond('ilut', spmat m[, int fillin[, scalar threshold]])
PC = gf_precond('superlu', spmat m)
PC = gf_precond('spmat', spmat m)

Description :

General constructor for precond objects.

The preconditioners may store REAL or COMPLEX values. They accept getfem sparse
matrices and Matlab sparse matrices.

Command list :

PC = gf_precond('identity')

Create a REAL identity precondioner.

PC = gf_precond('cidentity')

Create a COMPLEX identity precondioner.

PC = gf_precond('diagonal', vec D)

Create a diagonal precondioner.

PC = gf_precond('ildlt', spmat m)

Create an ILDLT (Cholesky) preconditioner for the (symmetric) sparse matrix
<literal>m</literal>. This preconditioner has the same sparsity pattern than <lit-
eral>m</literal> (no fill-in).

PC = gf_precond('ilu', spmat m)

Create an ILU (Incomplete LU) preconditioner for the sparse matrix <lit-
eral>m</literal>. This preconditioner has the same sparsity pattern than <lit-
eral>m</literal> (no fill-in).

PC = gf_precond('ildltt', spmat m[, int fillin[, scalar
threshold]])

5.41. gf_precond 123

Scilab Interface, Release 5.4.1

Create an ILDLTT (Cholesky with filling) preconditioner for the (symmetric)
sparse matrix <literal>m</literal>. The preconditioner may add at most <lit-
eral>fillin</literal> additional non-zero entries on each line. The default value
for <literal>fillin</literal> is 10, and the default threshold is1e-7.

PC = gf_precond('ilut', spmat m[, int fillin[, scalar
threshold]])

Create an ILUT (Incomplete LU with filling) preconditioner for the sparse
matrix <literal>m</literal>. The preconditioner may add at most <lit-
eral>fillin</literal> additional non-zero entries on each line. The default value
for <literal>fillin</literal> is 10, and the default threshold is 1e-7.

PC = gf_precond('superlu', spmat m)

Uses SuperLU to build an exact factorization of the sparse matrix <lit-
eral>m</literal>. This preconditioner is only available if the getfem-interface
was built with SuperLU support. Note that LU factorization is likely to eat all
your memory for 3D problems.

PC = gf_precond('spmat', spmat m)

Preconditioner given explicitely by a sparse matrix.

5.42 gf_precond_get

Synopsis

gf_precond_get(precond P, 'mult', vec V)
gf_precond_get(precond P, 'tmult', vec V)
gf_precond_get(precond P, 'type')
gf_precond_get(precond P, 'size')
gf_precond_get(precond P, 'is_complex')
s = gf_precond_get(precond P, 'char')
gf_precond_get(precond P, 'display')

Description :

General function for querying information about precond objects.

Command list :

gf_precond_get(precond P, 'mult', vec V)

Apply the preconditioner to the supplied vector.

gf_precond_get(precond P, 'tmult', vec V)

Apply the transposed preconditioner to the supplied vector.

gf_precond_get(precond P, 'type')

Return a string describing the type of the preconditioner (‘ilu’, ‘ildlt’,..).

gf_precond_get(precond P, 'size')

Return the dimensions of the preconditioner.

gf_precond_get(precond P, 'is_complex')

124 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Return 1 if the preconditioner stores complex values.

s = gf_precond_get(precond P, 'char')

Output a (unique) string representation of the precond.

This can be used to perform comparisons between two different precond objects.
This function is to be completed.

gf_precond_get(precond P, 'display')

displays a short summary for a precond object.

5.43 gf_slice

Synopsis

sl = gf_slice(sliceop, {slice sl|{mesh m| mesh_fem mf, vec U}, int refine}
→˓[, mat CVfids])
sl = gf_slice('streamlines', mesh_fem mf, mat U, mat S)
sl = gf_slice('points', mesh m, mat Pts)
sl = gf_slice('load', string filename[, mesh m])

Description :

General constructor for slice objects.

Creation of a mesh slice. Mesh slices are very similar to a P1-discontinuous mesh_fem on
which interpolation is very fast. The slice is built from a mesh object, and a description of
the slicing operation, for example:

sl = gf_slice({'planar',+1,[0;0],[1;0]}, m, 5);

cuts the original mesh with the half space {y>0}. Each convex of the original mesh <lit-
eral>m</literal> is simplexified (for example a quadrangle is splitted into 2 triangles), and
each simplex is refined 5 times.

Slicing operations can be:

• cutting with a plane, a sphere or a cylinder

• intersection or union of slices

• isovalues surfaces/volumes

• “points”, “streamlines” (see below)

If the first argument is a mesh_fem <literal>mf</literal> instead of a mesh, and if it is
followed by a <literal>mf</literal>-field <literal>u</literal>, then the deformation <lit-
eral>u</literal> will be applied to the mesh before the slicing operation.

The first argument can also be a slice.

Command list :

sl = gf_slice(sliceop, {slice sl|{mesh m| mesh_fem mf, vec
U}, int refine}[, mat CVfids])

5.43. gf_slice 125

Scilab Interface, Release 5.4.1

Create a slice using <literal>sliceop</literal> operation.

<literal>sliceop</literal> operation is specified with Scilab CELL arrays (i.e.
with braces) . The first element is the name of the operation, followed the slicing
options:

• {‘none’} : Does not cut the mesh.

• {‘planar’, int orient, vec p, vec n} : Planar cut. <literal>p</literal> and
<literal>n</literal> define a half-space, <literal>p</literal> being a point
belong to the boundary of the half-space, and <literal>n</literal> being its
normal. If <literal>orient</literal> is equal to -1 (resp. 0, +1), then the
slicing operation will cut the mesh with the “interior” (resp. “boundary”,
“exterior”) of the half-space. <literal>orient</literal> may also be set to +2
which means that the mesh will be sliced, but both the outer and inner parts
will be kept.

• {‘ball’, int orient, vec c, scalar r} : Cut with a ball of center <lit-
eral>c</literal> and radius <literal>r</literal>.

• {‘cylinder’, int orient, vec p1, vec p2, scalar r} : Cut with a cylinder
whose axis is the line <literal>(p1, p2)</literal> and whose radius is <lit-
eral>r</literal>.

• {‘isovalues’, int orient, mesh_fem mf, vec U, scalar s} : Cut using
the isosurface of the field <literal>U</literal> (defined on the mesh_fem
<literal>mf</literal>). The result is the set <literal>{x such that <la-
tex style=”text”><![CDATA[U(x) leq s]]></latex>}</literal> or <literal>{x
such that </literal>U<literal>(x)=</literal>s<literal>}</literal> or <lit-
eral>{x such that </literal>U<literal>(x) >= </literal>s<literal>}</literal>
depending on the value of <literal>orient</literal>.

• {‘boundary’[, SLICEOP]} : Return the boundary of the result of SLICEOP,
where SLICEOP is any slicing operation. If SLICEOP is not speci-
fied, then the whole mesh is considered (i.e. it is equivalent to {‘bound-
ary’,{‘none’}}).

• {‘explode’, mat Coef} : Build an ‘exploded’ view of the mesh: each convex
is shrinked (<latex style=”text”><![CDATA[0 < text{Coef} leq 1]]></la-
tex>). In the case of 3D convexes, only their faces are kept.

• {‘union’, SLICEOP1, SLICEOP2} : Returns the union of slicing opera-
tions.

• {‘intersection’, SLICEOP1, SLICEOP2} : Returns the intersection of slic-
ing operations, for example:

sl = gf_slice({intersection',{'planar',+1,[0;0;0],[0;
→˓0;1]},

{'isovalues',-1,mf2,u2,0}},
→˓mf,u,5)

• {‘comp’, SLICEOP} : Returns the complementary of slicing operations.

• {‘diff’, SLICEOP1, SLICEOP2} : Returns the difference of slicing opera-
tions.

126 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

• {‘mesh’, mesh m} : Build a slice which is the intersection of the sliced
mesh with another mesh. The slice is such that all of its simplexes are
stricly contained into a convex of each mesh.

sl = gf_slice('streamlines', mesh_fem mf, mat U, mat S)

Compute streamlines of the (vector) field <literal>U</literal>, with seed points
given by the columns of <literal>S</literal>.

sl = gf_slice('points', mesh m, mat Pts)

Return the “slice” composed of points given by the columns of <lit-
eral>Pts</literal> (useful for interpolation on a given set of sparse points, see
<literal></literal>gf_compute(‘interpolate on’,sl)<literal></literal>).

sl = gf_slice('load', string filename[, mesh m])

Load the slice (and its linked mesh if it is not given as an argument) from a text
file.

5.44 gf_slice_get

Synopsis

d = gf_slice_get(slice S, 'dim')
a = gf_slice_get(slice S, 'area')
CVids = gf_slice_get(slice S, 'cvs')
n = gf_slice_get(slice S, 'nbpts')
ns = gf_slice_get(slice S, 'nbsplxs'[, int dim])
P = gf_slice_get(slice S, 'pts')
{S, CV2S} = gf_slice_get(slice S, 'splxs',int dim)
{P, E1, E2} = gf_slice_get(slice S, 'edges')
Usl = gf_slice_get(slice S, 'interpolate_convex_data', mat Ucv)
m = gf_slice_get(slice S, 'linked mesh')
m = gf_slice_get(slice S, 'mesh')
z = gf_slice_get(slice S, 'memsize')
gf_slice_get(slice S, 'export to vtk', string filename, ...)
gf_slice_get(slice S, 'export to vtu', string filename, ...)
gf_slice_get(slice S, 'export to pov', string filename)
gf_slice_get(slice S, 'export to dx', string filename, ...)
gf_slice_get(slice S, 'export to pos', string filename[, string name][[,
→˓mesh_fem mf1], mat U1, string nameU1[[,mesh_fem mf1], mat U2, string
→˓nameU2,...])
s = gf_slice_get(slice S, 'char')
gf_slice_get(slice S, 'display')

Description :

General function for querying information about slice objects.

Command list :

d = gf_slice_get(slice S, 'dim')

Return the dimension of the slice (2 for a 2D mesh, etc..).

a = gf_slice_get(slice S, 'area')

Return the area of the slice.

5.44. gf_slice_get 127

Scilab Interface, Release 5.4.1

CVids = gf_slice_get(slice S, 'cvs')

Return the list of convexes of the original mesh contained in the slice.

n = gf_slice_get(slice S, 'nbpts')

Return the number of points in the slice.

ns = gf_slice_get(slice S, 'nbsplxs'[, int dim])

Return the number of simplexes in the slice.

Since the slice may contain points (simplexes of dim 0), segments (simplexes
of dimension 1), triangles etc., the result is a vector of size gf_slice_get(slice S,
‘dim’)+1, except if the optional argument <literal>dim</literal> is used.

P = gf_slice_get(slice S, 'pts')

Return the list of point coordinates.

{S, CV2S} = gf_slice_get(slice S, 'splxs',int dim)

Return the list of simplexes of dimension <literal>dim</literal>.

On output, S has ‘dim+1’ rows, each column contains the point numbers of a
simplex. The vector <literal>CV2S</literal> can be used to find the list of sim-
plexes for any convex stored in the slice. For example ‘S(:,CV2S(4):CV2S(5)-1)’
gives the list of simplexes for the fourth convex.

{P, E1, E2} = gf_slice_get(slice S, 'edges')

Return the edges of the linked mesh contained in the slice.

<literal>P</literal> contains the list of all edge vertices, <literal>E1</literal>
contains the indices of each mesh edge in <literal>P</literal>, and <lit-
eral>E2</literal> contains the indices of each “edges” which is on the border
of the slice. This function is useless except for post-processing purposes.

Usl = gf_slice_get(slice S, 'interpolate_convex_data', mat
Ucv)

Interpolate data given on each convex of the mesh to the slice nodes.

The input array <literal>Ucv</literal> may have any number of dimensions, but
its last dimension should be equal to gf_mesh_get(mesh M, ‘max cvid’).

Example of use: gf_slice_get(slice S, ‘interpolate_convex_data’,
gf_mesh_get(mesh M, ‘quality’)).

m = gf_slice_get(slice S, 'linked mesh')

Return the mesh on which the slice was taken.

m = gf_slice_get(slice S, 'mesh')

Return the mesh on which the slice was taken (identical to ‘linked mesh’)

z = gf_slice_get(slice S, 'memsize')

Return the amount of memory (in bytes) used by the slice object.

gf_slice_get(slice S, 'export to vtk', string filename, ...)

128 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

Export a slice to VTK.

Following the <literal>filename</literal>, you may use any of the following op-
tions:

• if ‘ascii’ is not used, the file will contain binary data (non portable, but fast).

• if ‘edges’ is used, the edges of the original mesh will be written instead of
the slice content.

More than one dataset may be written, just list them. Each dataset consists of
either:

• a field interpolated on the slice (scalar, vector or tensor), followed by an
optional name.

• a mesh_fem and a field, followed by an optional name.

Examples:

• gf_slice_get(slice S, ‘export to vtk’, ‘test.vtk’, Usl, ‘first_dataset’, mf, U2,
‘second_dataset’)

• gf_slice_get(slice S, ‘export to vtk’, ‘test.vtk’, ‘ascii’, mf,U2)

• gf_slice_get(slice S, ‘export to vtk’, ‘test.vtk’, ‘edges’, ‘ascii’, Uslice)

gf_slice_get(slice S, 'export to vtu', string filename, ...)

Export a slice to VTK(XML).

Following the <literal>filename</literal>, you may use any of the following op-
tions:

• if ‘ascii’ is not used, the file will contain binary data (non portable, but fast).

• if ‘edges’ is used, the edges of the original mesh will be written instead of
the slice content.

More than one dataset may be written, just list them. Each dataset consists of
either:

• a field interpolated on the slice (scalar, vector or tensor), followed by an
optional name.

• a mesh_fem and a field, followed by an optional name.

Examples:

• gf_slice_get(slice S, ‘export to vtu’, ‘test.vtu’, Usl, ‘first_dataset’, mf, U2,
‘second_dataset’)

• gf_slice_get(slice S, ‘export to vtu’, ‘test.vtu’, ‘ascii’, mf,U2)

• gf_slice_get(slice S, ‘export to vtu’, ‘test.vtu’, ‘edges’, ‘ascii’, Uslice)

gf_slice_get(slice S, 'export to pov', string filename)

Export a the triangles of the slice to POV-RAY.

gf_slice_get(slice S, 'export to dx', string filename, ...)

Export a slice to OpenDX.

5.44. gf_slice_get 129

Scilab Interface, Release 5.4.1

Following the <literal>filename</literal>, you may use any of the following op-
tions:

• if ‘ascii’ is not used, the file will contain binary data (non portable, but fast).

• if ‘edges’ is used, the edges of the original mesh will be written instead of
the slice content.

• if ‘append’ is used, the opendx file will not be overwritten, and the new data
will be added at the end of the file.

More than one dataset may be written, just list them. Each dataset consists of
either:

• a field interpolated on the slice (scalar, vector or tensor), followed by an
optional name.

• a mesh_fem and a field, followed by an optional name.

gf_slice_get(slice S, 'export to pos', string filename[,
string name][[,mesh_fem mf1], mat U1, string nameU1[[,
mesh_fem mf1], mat U2, string nameU2,...])

Export a slice to Gmsh.

More than one dataset may be written, just list them. Each dataset consists of
either:

• a field interpolated on the slice (scalar, vector or tensor).

• a mesh_fem and a field.

s = gf_slice_get(slice S, 'char')

Output a (unique) string representation of the slice.

This can be used to perform comparisons between two different slice objects.
This function is to be completed.

gf_slice_get(slice S, 'display')

displays a short summary for a slice object.

5.45 gf_slice_set

Synopsis

gf_slice_set(slice S, 'pts', mat P)

Description :

Edition of mesh slices.

Command list :

gf_slice_set(slice S, 'pts', mat P)

Replace the points of the slice.

The new points <literal>P</literal> are stored in the columns the matrix. Note
that you can use the function to apply a deformation to a slice, or to change the

130 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

dimension of the slice (the number of rows of <literal>P</literal> is not required
to be equal to gf_slice_get(slice S, ‘dim’)).

5.46 gf_spmat

Synopsis

SM = gf_spmat('empty', int m [, int n])
SM = gf_spmat('copy', mat K [, I [, J]])
SM = gf_spmat('identity', int n)
SM = gf_spmat('mult', spmat A, spmat B)
SM = gf_spmat('add', spmat A, spmat B)
SM = gf_spmat('diag', mat D [, ivec E [, int n [,int m]]])
SM = gf_spmat('load','hb'|'harwell-boeing'|'mm'|'matrix-market', string
→˓filename)

Description :

General constructor for spmat objects.

Create a new sparse matrix in GetFEM format. These sparse matrix can be stored as CSC
(compressed column sparse), which is the format used by Matlab, or they can be stored
as WSC (internal format to getfem). The CSC matrices are not writable (it would be very
inefficient), but they are optimized for multiplication with vectors, and memory usage. The
WSC are writable, they are very fast with respect to random read/write operation. However
their memory overhead is higher than CSC matrices, and they are a little bit slower for
matrix-vector multiplications.

By default, all newly created matrices are build as WSC matrices.
This can be changed later with <literal></literal>gf_spmat_set(spmat S,
‘to_csc’,. . .)<literal></literal>, or may be changed automatically by getfem (for ex-
ample <literal></literal>gf_linsolve()<literal></literal> converts the matrices to CSC).

The matrices may store REAL or COMPLEX values.

Command list :

SM = gf_spmat('empty', int m [, int n])

Create a new empty (i.e. full of zeros) sparse matrix, of dimensions <literal>m x
n</literal>. If <literal>n</literal> is omitted, the matrix dimension is <literal>m
x m</literal>.

SM = gf_spmat('copy', mat K [, I [, J]])

Duplicate a matrix <literal>K</literal> (which might be a spmat). If index <lit-
eral>I</literal> and/or <literal>J</literal> are given, the matrix will be a subma-
trix of <literal>K</literal>. For example:

m = gf_spmat('copy', sprand(50,50,.1), 1:40, [6 7 8 3 10])

will return a 40x5 matrix.

SM = gf_spmat('identity', int n)

Create a <literal>n x n</literal> identity matrix.

5.46. gf_spmat 131

Scilab Interface, Release 5.4.1

SM = gf_spmat('mult', spmat A, spmat B)

Create a sparse matrix as the product of the sparse matrices <literal>A</literal>
and <literal>B</literal>. It requires that <literal>A</literal> and <lit-
eral>B</literal> be both real or both complex, you may have to use <lit-
eral></literal>gf_spmat_set(spmat S, ‘to_complex’)<literal></literal>

SM = gf_spmat('add', spmat A, spmat B)

Create a sparse matrix as the sum of the sparse matrices <literal>A</literal> and
<literal>B</literal>. Adding a real matrix with a complex matrix is possible.

SM = gf_spmat('diag', mat D [, ivec E [, int n [,int m]]])

Create a diagonal matrix. If <literal>E</literal> is given, <literal>D</literal>
might be a matrix and each column of <literal>E</literal> will contain the
sub-diagonal number that will be filled with the corresponding column of <lit-
eral>D</literal>.

SM = gf_spmat('load','hb'|'harwell-boeing'|'mm'|'matrix-market',
string filename)

Read a sparse matrix from an Harwell-Boeing or a Matrix-Market file .

5.47 gf_spmat_get

Synopsis

n = gf_spmat_get(spmat S, 'nnz')
Sm = gf_spmat_get(spmat S, 'full'[, list I[, list J]])
MV = gf_spmat_get(spmat S, 'mult', vec V)
MtV = gf_spmat_get(spmat S, 'tmult', vec V)
D = gf_spmat_get(spmat S, 'diag'[, list E])
s = gf_spmat_get(spmat S, 'storage')
{ni,nj} = gf_spmat_get(spmat S, 'size')
b = gf_spmat_get(spmat S, 'is_complex')
{JC, IR} = gf_spmat_get(spmat S, 'csc_ind')
V = gf_spmat_get(spmat S, 'csc_val')
{N, U0} = gf_spmat_get(spmat S, 'dirichlet nullspace', vec R)
gf_spmat_get(spmat S, 'save', string format, string filename)
s = gf_spmat_get(spmat S, 'char')
gf_spmat_get(spmat S, 'display')
{mantissa_r, mantissa_i, exponent} = gf_spmat_get(spmat S, 'determinant')

Description :

Command list :

n = gf_spmat_get(spmat S, 'nnz')

Return the number of non-null values stored in the sparse matrix.

Sm = gf_spmat_get(spmat S, 'full'[, list I[, list J]])

Return a full (sub-)matrix.

The optional arguments <literal>I</literal> and <literal>J</literal>, are the sub-
intervals for the rows and columns that are to be extracted.

132 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

MV = gf_spmat_get(spmat S, 'mult', vec V)

Product of the sparse matrix <literal>M</literal> with a vector <lit-
eral>V</literal>.

For matrix-matrix multiplications, see gf_spmat(‘mult’).

MtV = gf_spmat_get(spmat S, 'tmult', vec V)

Product of <literal>M</literal> transposed (conjugated if <literal>M</literal> is
complex) with the vector <literal>V</literal>.

D = gf_spmat_get(spmat S, 'diag'[, list E])

Return the diagonal of <literal>M</literal> as a vector.

If <literal>E</literal> is used, return the sub-diagonals whose ranks are given in
E.

s = gf_spmat_get(spmat S, 'storage')

Return the storage type currently used for the matrix.

The storage is returned as a string, either ‘CSC’ or ‘WSC’.

{ni,nj} = gf_spmat_get(spmat S, 'size')

Return a vector where <literal>ni</literal> and <literal>nj</literal> are the di-
mensions of the matrix.

b = gf_spmat_get(spmat S, 'is_complex')

Return 1 if the matrix contains complex values.

{JC, IR} = gf_spmat_get(spmat S, 'csc_ind')

Return the two usual index arrays of CSC storage.

If <literal>M</literal> is not stored as a CSC matrix, it is converted into CSC.

V = gf_spmat_get(spmat S, 'csc_val')

Return the array of values of all non-zero entries of <literal>M</literal>.

If <literal>M</literal> is not stored as a CSC matrix, it is converted into CSC.

{N, U0} = gf_spmat_get(spmat S, 'dirichlet nullspace', vec
R)

Solve the dirichlet conditions <literal>M.U=R</literal>.

A solution <literal>U0</literal> which has a minimum L2-norm is returned,
with a sparse matrix <literal>N</literal> containing an orthogonal basis of the
kernel of the (assembled) constraints matrix <literal>M</literal> (hence, the
PDE linear system should be solved on this subspace): the initial problem

<literal>K.U = B</literal> with constraints <literal>M.U = R</literal>

is replaced by

<literal>(N’.K.N).UU = N’.B</literal> with <literal>U = N.UU + U0</literal>

gf_spmat_get(spmat S, 'save', string format, string
filename)

5.47. gf_spmat_get 133

Scilab Interface, Release 5.4.1

Export the sparse matrix.

the format of the file may be ‘hb’ for Harwell-Boeing, or ‘mm’ for Matrix-
Market.

s = gf_spmat_get(spmat S, 'char')

Output a (unique) string representation of the spmat.

This can be used to perform comparisons between two different spmat objects.
This function is to be completed.

gf_spmat_get(spmat S, 'display')

displays a short summary for a spmat object.

{mantissa_r, mantissa_i, exponent} = gf_spmat_get(spmat S,
'determinant')

returns the matrix determinant calculated using MUMPS.

5.48 gf_spmat_set

Synopsis

gf_spmat_set(spmat S, 'clear'[, list I[, list J]])
gf_spmat_set(spmat S, 'scale', scalar v)
gf_spmat_set(spmat S, 'transpose')
gf_spmat_set(spmat S, 'conjugate')
gf_spmat_set(spmat S, 'transconj')
gf_spmat_set(spmat S, 'to_csc')
gf_spmat_set(spmat S, 'to_wsc')
gf_spmat_set(spmat S, 'to_complex')
gf_spmat_set(spmat S, 'diag', mat D [, ivec E])
gf_spmat_set(spmat S, 'assign', ivec I, ivec J, mat V)
gf_spmat_set(spmat S, 'add', ivec I, ivec J, mat V)

Description :

Modification of the content of a getfem sparse matrix.

Command list :

gf_spmat_set(spmat S, 'clear'[, list I[, list J]])

Erase the non-zero entries of the matrix.

The optional arguments <literal>I</literal> and <literal>J</literal> may be spec-
ified to clear a sub-matrix instead of the entire matrix.

gf_spmat_set(spmat S, 'scale', scalar v)

Multiplies the matrix by a scalar value <literal>v</literal>.

gf_spmat_set(spmat S, 'transpose')

Transpose the matrix.

gf_spmat_set(spmat S, 'conjugate')

Conjugate each element of the matrix.

134 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

gf_spmat_set(spmat S, 'transconj')

Transpose and conjugate the matrix.

gf_spmat_set(spmat S, 'to_csc')

Convert the matrix to CSC storage.

CSC storage is recommended for matrix-vector multiplications.

gf_spmat_set(spmat S, 'to_wsc')

Convert the matrix to WSC storage.

Read and write operation are quite fast with WSC storage.

gf_spmat_set(spmat S, 'to_complex')

Store complex numbers.

gf_spmat_set(spmat S, 'diag', mat D [, ivec E])

Change the diagonal (or sub-diagonals) of the matrix.

If <literal>E</literal> is given, <literal>D</literal> might be a matrix and each
column of <literal>E</literal> will contain the sub-diagonal number that will be
filled with the corresponding column of <literal>D</literal>.

gf_spmat_set(spmat S, 'assign', ivec I, ivec J, mat V)

Copy V into the sub-matrix ‘M(I,J)’.

<literal>V</literal> might be a sparse matrix or a full matrix.

gf_spmat_set(spmat S, 'add', ivec I, ivec J, mat V)

Add <literal>V</literal> to the sub-matrix ‘M(I,J)’.

<literal>V</literal> might be a sparse matrix or a full matrix.

5.49 gf_util

Synopsis

gf_util('save matrix', string FMT, string FILENAME, mat A)
A = gf_util('load matrix', string FMT, string FILENAME)
tl = gf_util('trace level' [, int level])
tl = gf_util('warning level', int level)

Description :

Performs various operations which do not fit elsewhere.

Command list :

gf_util('save matrix', string FMT, string FILENAME, mat A)

Exports a sparse matrix into the file named FILENAME, using Harwell-Boeing
(FMT=’hb’) or Matrix-Market (FMT=’mm’) formatting.

A = gf_util('load matrix', string FMT, string FILENAME)

Imports a sparse matrix from a file.

5.49. gf_util 135

Scilab Interface, Release 5.4.1

tl = gf_util('trace level' [, int level])

Set the verbosity of some GetFEM routines.

Typically the messages printed by the model bricks, 0 means no trace message
(default is 3). if no level is given, the current trace level is returned.

tl = gf_util('warning level', int level)

Filter the less important warnings displayed by getfem.

0 means no warnings, default level is 3. if no level is given, the current warning
level is returned.

5.50 gf_workspace

Synopsis

gf_workspace('push')
gf_workspace('pop', [,i,j, ...])
gf_workspace('stat')
gf_workspace('stats')
gf_workspace('keep', i[,j,k...])
gf_workspace('keep all')
gf_workspace('clear')
gf_workspace('clear all')
gf_workspace('class name', i)

Description :

Getfem workspace management function.

Getfem uses its own workspaces in Matlab, independently of the matlab workspaces (this
is due to some limitations in the memory management of matlab objects). By default,
all getfem variables belong to the root getfem workspace. A function can create its own
workspace by invoking gf_workspace(‘push’) at its beginning. When exiting, this function
MUST invoke gf_workspace(‘pop’) (you can use matlab exceptions handling to do this
cleanly when the function exits on an error).

Command list :

gf_workspace('push')

Create a new temporary workspace on the workspace stack.

gf_workspace('pop', [,i,j, ...])

Leave the current workspace, destroying all getfem objects belonging to it, ex-
cept the one listed after ‘pop’, and the ones moved to parent workspace by
gf_workspace(‘keep’).

gf_workspace('stat')

Print informations about variables in current workspace.

gf_workspace('stats')

Print informations about all getfem variables.

gf_workspace('keep', i[,j,k...])

136 Chapter 5. Command reference

Scilab Interface, Release 5.4.1

prevent the listed variables from being deleted when gf_workspace(“pop”) will
be called by moving these variables in the parent workspace.

gf_workspace('keep all')

prevent all variables from being deleted when gf_workspace(“pop”) will be
called by moving the variables in the parent workspace.

gf_workspace('clear')

Clear the current workspace.

gf_workspace('clear all')

Clear every workspace, and returns to the main workspace (you should not need
this command).

gf_workspace('class name', i)

Return the class name of object i (if I is a mesh handle, it return gfMesh etc..)

5.50. gf_workspace 137

Scilab Interface, Release 5.4.1

138 Chapter 5. Command reference

Index

E
environment variable

gfCvStruct, 7
gfFem, 7
gfGeoTrans, 7
gfGlobalFunction, 7
gfInteg, 7
gfMdBrick, 8
gfMdState, 8
gfMesh, 7
gfMeshFem, 8
gfMeshImM, 8
gfMeshSlice, 8
gfModel, 8
memory management, 8

G
gfCvStruct, 7
gfFem, 7
gfGeoTrans, 7
gfGlobalFunction, 7
gfInteg, 7
gfMdBrick, 8
gfMdState, 8
gfMesh, 7
gfMeshFem, 8
gfMeshImM, 8
gfMeshSlice, 8
gfModel, 8

M
memory management, 8

139

	Introduction
	Installation
	GetFEM organization
	Functions
	Objects

	Draw Command reference
	gf_colormap
	gf_plot
	gf_plot_1D
	gf_plot_mesh
	gf_plot_slice

	Command reference
	gf_asm
	gf_compute
	gf_cont_struct
	gf_cont_struct_get
	gf_cvstruct_get
	gf_delete
	gf_eltm
	gf_fem
	gf_fem_get
	gf_geotrans
	gf_geotrans_get
	gf_global_function
	gf_global_function_get
	gf_integ
	gf_integ_get
	gf_levelset
	gf_levelset_get
	gf_levelset_set
	gf_linsolve
	gf_mesh
	gf_mesh_get
	gf_mesh_set
	gf_mesh_fem
	gf_mesh_fem_get
	gf_mesh_fem_set
	gf_mesh_im
	gf_mesh_im_get
	gf_mesh_im_set
	gf_mesh_im_data
	gf_mesh_im_data_get
	gf_mesh_im_data_set
	gf_mesh_levelset
	gf_mesh_levelset_get
	gf_mesh_levelset_set
	gf_mesher_object
	gf_mesher_object_get
	gf_model
	gf_model_get
	gf_model_set
	gf_poly
	gf_precond
	gf_precond_get
	gf_slice
	gf_slice_get
	gf_slice_set
	gf_spmat
	gf_spmat_get
	gf_spmat_set
	gf_util
	gf_workspace

	Index

