
Gmm++ user documentation
Release 5.4.1

Yves Renard

Jul 22, 2021

Contents

1 Introduction 3

2 Installation 5

3 Matrix and Vector type provided by Gmm++ 7
3.1 dense vectors . 8
3.2 sparse vectors . 8
3.3 skyline vectors . 8
3.4 generic row and column matrices . 8
3.5 dense matrices . 8
3.6 sparse matrices . 9

4 Input and output with Harwell-Boeing and Matrix Market formats 11

5 sub-vectors and sub-matrices 13
5.1 row and column of a matrix . 14

6 Miscellaneous methods 15

7 Basic linear algebra operations 17
7.1 scale and scaled . 17
7.2 transposition . 17
7.3 imaginary and real part . 17
7.4 conjugate . 18
7.5 add . 18
7.6 mult . 18
7.7 norms . 19
7.8 trace . 19
7.9 scalar product . 19

8 Solving triangular systems 21

9 Dense LU decomposition 23

10 Dense QR factorisation, eigenvalues and eigenvectors 25

11 Iterative solvers 27

i

11.1 iterations . 27
11.2 Linear solvers . 27
11.3 Preconditioners . 28
11.4 Additive Schwarz method . 29
11.5 Range basis function . 30

12 Catch errors 31

13 Interface with BLAS, LAPACK or ATLAS 33

14 Interface with SuperLU 37

15 How to use Gmm++ with QD type (double-double and quad-double) 39

16 First steps with Gmm++ 41
16.1 How can I invert a matrix ? . 41
16.2 How can I solve a linear system ? . 41
16.3 How can I transform a vector into a matrix and reshape it ? 42
16.4 What is the better way to resize a matrix ? . 43

17 Deeper inside Gmm++ 45
17.1 The linalg_traits structure . 45
17.2 How to iterate on the components of a vector . 48
17.3 How to iterate on a matrix . 49
17.4 How to make your algorithm working on all type of matrices 49

18 How to disable verifications 51

ii

Gmm++ user documentation, Release 5.4.1

Contents 1

Gmm++ user documentation, Release 5.4.1

2 Contents

CHAPTER 1

Introduction

Gmm++ provides some basic types of sparse and dense matrices and vectors. It provides some generic
operations on them (copy, addition, multiplication, sub-vector and sub-matrices, solvers . . .). The
syntax of Gmm++ is very close to MTL and ITL (see http://www.mtl4.org/). Especially, the code for
most of the iterative solvers has been imported from ITL. The performance of Gmm++ is also close to
the one of MTL, sometimes better. The difference is that basically Gmm++ has been written to be able
to interface other libraries and gives an access to sub matrices and sub vectors in all cases. Also some
optimizations has been made for matrix-matrix multiplication, usage of reference has been somewhat
cleared, const qualifier usage is clarified, and we hope it is somewhat easier to use.

Copyright © 2004-2020 GetFEM project.

The text of the GetFEM website and the documentations are available for modification and reuse under
the terms of the GNU Free Documentation License

GetFEM is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version along with the GCC Runtime Library Exception either version
3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC
Runtime Library Exception for more details. You should have received a copy of the GNU Lesser
General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

3

http://www.mtl4.org/
http://www.gnu.org/licenses/fdl.html

Gmm++ user documentation, Release 5.4.1

4 Chapter 1. Introduction

CHAPTER 2

Installation

Since we use standard GNU tools, the installation of the Gmm++ library is somewhat standard.

Note that if you use GetFEM, you do not have to install Gmm++ since GetFEM is provided with its
own version of Gmm++.

Moreover, as Gmm++ is a template library, no compilation is needed to install it. If the Gmm++ archive
is on your current directory you can unpack it and enter inside the directory of the distribution with the
commands:

gunzip -c gmm-x.xx.tar.gz | tar xvf -
cd gmm-x.xx

Then you you have to run the configure script just typing:

./configure

or if you want to set the prefix directory where to install the library you can use the --prefix option
(the default prefix directory is /usr/local):

./configure --prefix=\textit{dest_dir}

then start the installation with:

make install

You can also check if your configuration is correct with:

make check

which compiles random tests.

If you want to use a different compiler than the one chosen automatically by the ./configure script,
just specify its name on the command line:

5

Gmm++ user documentation, Release 5.4.1

./configure CXX=mycompiler

More specific instructions can be found in the README* files of the distribution.

Now, to use Gmm++ in you programs, the simpler manner is to include the file gmm/gmm.h which
includes all the template library. If the compilation time is too important, the minimum to be included
is contained is the file gmm/gmm_kernel.h (vectors and matrix types, blas, sub vector and sub
matrices).

DO NOT FORGET to catch errors messages. See the corresponding section.

6 Chapter 2. Installation

CHAPTER 3

Matrix and Vector type provided by Gmm++

The convention is that any vector or matrix type (except if it is a reference) can be instantiated with the
constructors:

Vector V(n); // build a vector of size n.
Matrix M(n, m); // build a matrix with n rows and m columns.

No other constructor is used inside Gmm++ and you should not use any other if you want your code to
be compatible with any matrix and vector type.

It is assumed that each vector type interfaced with Gmm++ allows to access to a component with the
following syntax:

a = V[i]; // read the ith component of V.
V[i] = b; // write the ith component of V.

The write access being available if the vector is not a constant reference. For a matrix:

a = M(i, j); // read the component at row i and column j of M.
M(i, j) = b; // write the component at row i and column j of M.

Again the write access is available if the matrix is not a const reference. Generally, especially for sparse
matrices, this access is not very efficient. Linear algebra procedures access to the components of the
vectors and matrices via iterators. (see section Deeper inside Gmm++)

It is also not recommended (at all) to use the original copy operator for vectors or matrices. Generally,
it will not do the appropriate job. instead, you have to use the method:

gmm::copy(V, W); // W <-- V

which works for all correctly interfaced matrix and vector type, even if V is not of the same type as W (V
could be sparse and W dense for instance).

in Gmm++, a vector is not a (n by 1) matrix, it is a one dimensional object. If you need to use a vector
as a (n by 1) column matrix or a (1 by n) row matrix, you can do it with:

7

Gmm++ user documentation, Release 5.4.1

gmm::row_vector(V) // gives a reference on V considered as
// a (1 by n) row matrix

gmm::col_vector(V) // gives a reference on V considered as
// a (n by 1) col matrix

In the following, the template parameter T will represent a scalar type like double or
std::complex<double>.

3.1 dense vectors

Gmm++ interfaces std::vector<T> so you can use it as your basic dense vector type. If you need
to interface another type of dense vector you can see in gmm/gmm_interface.h some examples.

3.2 sparse vectors

Gmm++ provides two types of sparse vectors: gmm::wsvector<T> and gmm::rsvector<T>.
gmm::wsvector<T> is optimized for write operations and gmm::rsvector<T> is optimized for
read operations. It should be appropriate to use gmm::wsvector<T> for assembling procedures and
then to copy the vector in a gmm::rsvector<T> for the solvers. Those two vector types can be used
to create row major or column major matrices (see section generic row and column matrices).

3.3 skyline vectors

The type gmm::slvector<T> defines a skyline vector, in the sense that only an interval of this
vector is stored. With this type of vector you can build skyline matrices as gmm::row_matrix<
gmm::slvector<T> > (see next section generic row and column matrices).

3.4 generic row and column matrices

Gmm++ provides the two following types of matrices: gmm::row_matrix<VECT> and
gmm::col_matrix<VECT> where VECT should be a valid (i.e. interfaced) vector type. Those two
type of matrices store an array of VECT so the memory is not contiguous. Initializations are:

gmm::row_matrix< std::vector<double> > M1(10, 10); // dense row matrix
gmm::col_matrix< gmm::wsvector<double> > M2(5, 20); // sparse column matrix

Of course gmm::row_matrix<VECT> is a row matrix and it is impossible to access to a particular
column of this matrix.

gmm::mat_nrows(M) gives the number of rows of a matrix and gmm::mat_ncols(M) the num-
ber of columns.

3.5 dense matrices

It is recommended to use the type:

8 Chapter 3. Matrix and Vector type provided by Gmm++

Gmm++ user documentation, Release 5.4.1

gmm::dense_matrix<T>

to represent a dense matrix type because it is compatible with the Fortran format (column major) and
some operations are interfaced with blas and Lapack (see section Interface with BLAS, LAPACK or
ATLAS). It is considered as a column and row matrix (column preferred) which means that you can
access both to the columns and rows.

However, matrix types as gmm::row_matrix< std::vector<double> > or
gmm::col_matrix< std::vector<double> > represent also some dense matrices.

3.6 sparse matrices

Similarly, gmm::row_matrix< gmm::wsvector<double> > or gmm::col_matrix<
gmm::rsvector<double> > represents some sparse matrices, but Gmm++ provides also two
types of classical sparse matrix types:

gmm::csr_matrix<T>
gmm::csc_matrix<T>

The type gmm::csr_matrix<T> represents a compressed sparse row matrix and
gmm::csc_matrix<T> a compressed sparse column matrix. The particularity of these two
types of matrices is to be read only, in the sense that it is not possible to access at a particular component
to write on it (the operation is too expansive). The only write operation permitted is gmm::copy. The
right way to use these matrices is first to execute the write operations on another type of matrix like
gmm::row_matrix< gmm::wsvector<double> > then to do a copy:

gmm::row_matrix< gmm::wsvector<double> > M1;
...
assembly operation on M1
...
M1(i,j) = b;
...
gmm::csc_matrix<double> M2;
gmm::clean(M1, 1E-12);
gmm::copy(M1, M2);

Matrices gmm::csr_matrix<T> and gmm::csc_matrix<T> have the advantage to have a stan-
dard format (interfaceable with Fortran code) and to have a compact format (contiguous in memory). To
be able to be compatible with Fortran programs a second template parameter exists on these type, you
can declare:

gmm::csc_matrix<double, 1> M1;
gmm::csr_matrix<double, 1> M2;

The 1 means that a shift will be done on all the indices.

3.6. sparse matrices 9

Gmm++ user documentation, Release 5.4.1

10 Chapter 3. Matrix and Vector type provided by Gmm++

CHAPTER 4

Input and output with Harwell-Boeing and Matrix Market formats

Including the file gmm/gmm_inoutput.h you will be able to load and save matrices with
Harwell-Boeing and Matrix Market formats. Concerning the Harwell-Boeing format, only the
type gmm::csc_matrix<double> and gmm::csc_matrix<std::complex<double> >
has been interfaced, so you can execute:

gmm::Harwell_Boeing_save("filename", A); // save the matrix A .
gmm::Harwell_Boeing_load("filename", A); // load the matrix A.

If A is not a gmm::csc_matrix<double> or a gmm::csc_matrix<std::complex<double>
> a copy is made.

Concerning the Matrix Market format, it is possible to save a gmm::csc_matrix<double> or a
gmm::csc_matrix<std::complex<double> > and to load a gmm::row_matrix<VECT>
or a gmm::col_matrix<VECT>:

gmm::MatrixMarket_save("filename", A); // save a csc_matrix.
gmm::MatrixMarket_load("filename", A); // load a row_matrix or a col_matrix

11

Gmm++ user documentation, Release 5.4.1

12 Chapter 4. Input and output with Harwell-Boeing and Matrix Market formats

CHAPTER 5

sub-vectors and sub-matrices

It is possible to obtain any sub-vector or sub-matrix of a fully interfaced object. There are four types of
sub indices:

gmm::sub_interval(first, length);

represents an interval whose first index is first and length is length (for instance
gmm::sub_interval(10, 3); represents the indices {10, 11, 12}).

gmm::sub_slice(first, length, step);

represents also an interval in which one index over step is taken. (for instance
gmm::sub_slice(10, 3, 2); represents the indices {10, 12, 14})

gmm::sub_index(CONT c);

represents the sub-index which is the collection of index contained in the container c. For instance:

std::vector<size_t> c(3);
c[0] = 1; c[1] = 3; c[2] = 16;
gmm::sub_index(c);

represents the indices {1, 3, 16}.

VERY IMPORTANT : the container c has to be sorted from the smaller index to the greater one (i.e.
with increasing order) and no repetition is allowed.

For unsorted index such as permutation, a special type of sub index is defined:

gmm::unsorted_sub_index(CONT c);

Some algorithms are a little bit slower with unsorted sub indices.

Now gmm::sub_vector(V, subi) gives a reference to a sub-vector:

13

Gmm++ user documentation, Release 5.4.1

gmm::vsvector<double> V(10);
V[5] = 3.0;
std::cout << gmm::sub_vector(V, gmm::sub_interval(2, 3)) << std::endl;

prints to the standard output V[2], V[3] and V[4].

gmm::sub_matrix(V, subi1, subi2) gives a reference to a sub-matrix. For instance:

gmm::col_matrix< gmm::wsvector<double> > M(5, 20);
M(3, 2) = 5.0;
std::cout << gmm::sub_matrix(M, gmm::sub_interval(2, 3), gmm::sub_
→˓interval(2, 3))

<< std::endl;

prints to the output a sub-matrix. If the two sub-indices are equal, it is possible to omit the second. For
instance:

gmm::col_matrix< gmm::wsvector<double> > M(5, 20);
M(3, 2) = 5.0;
std::cout << gmm::sub_matrix(V, gmm::sub_interval(2, 3)) << std::endl;

The reference on sub_matrix is writable if the corresponding matrix is writable (so you can copy on a
sub_matrix, add sub-matrices . . .).

5.1 row and column of a matrix

gmm::mat_row(M, i) gives a (possibly writable) reference to the row i of matrix M, and
gmm::mat_col(M, i) gives a (possibly writable) reference to the column i. It is not possible
to access to the rows if M is a column matrix and to the columns if it is a row matrix. It is possible to
use gmm::mat_const_row(M, i) and gmm::mat_const_col(M, i) to have constant refer-
ences.

14 Chapter 5. sub-vectors and sub-matrices

CHAPTER 6

Miscellaneous methods

gmm::vect_size(V); // gives the size of the vector V.

gmm::resize(V, n); // Change the size of the vector V.
// Preserve the min(n, vect_size(V)) first components.
// Do not work for references.

gmm::resize(M, m, n); // Change the dimensions of matrix M.
// Preserve the
// min(m, mat_nrows(M)) x min(n, mat_ncols(M))
// first components. Do not work for references.

gmm::reshape(M, m, n); // returns the m-by-n matrix whose elements
// are taken columnwise from M.
// An error results if M does not have m*m
// elements. Works only with dense_matrix<T> for
// the moment.

gmm::nnz(V); // gives the number of stored components of the vector V.
gmm::nnz(M); // gives the total number of stored components of the matrix
→˓M.

gmm::mat_nrows(M) // gives the number of rows of a matrix M.
gmm::mat_ncols(M) // gives the number of columns of a matrix M.

gmm::write(o, V); // print the vector V to the output stream o.
gmm::write(o, M); // print the matrix M to the output stream o.

Most of the time it is more convenient to use:

std::cout << gmm::vref(V) << std::endl;
std::cout << M << std::endl;

gmm::clear(V); // set to zero all the components of the vector V;
gmm::clear(M); // set to zero all the components of the matrix M;

15

Gmm++ user documentation, Release 5.4.1

gmm::clean(V, 1E-10); // set to zero all the components of the vector V
// whose modulus is less or equal to 1E-10

gmm::clean(M, 1E-10); // idem for a matrix M.

gmm::fill_random(V); // fill a dense vector V with random number
// between -1 and 1

gmm::fill_random(V, cfill); // fill a dense or sparse vector with random
// numbers. cfill should be between 0.0 qnd 1.0 and
// represent the ratio of filled components.

gmm::fill_random(M); // fill a dense matrix M with random number
gmm::fill_random(M, cfill); // fill a dense or sparse matrix M with random

// numbers.

16 Chapter 6. Miscellaneous methods

CHAPTER 7

Basic linear algebra operations

The same choice has been made as in MTL to provide basic operations as functions not as operators.
The advantages are that it is clearer to see where are the linear algebra operations in the program and the
programming of optimized basic linear algebra operations is greatly simplified.

7.1 scale and scaled

gmm::scale is used to multiply a vector or a matrix with a scalar factor:

gmm::scale(V, 10.0); // V * 10.0 ---> V

If one not needs to multiply the vector but wants to use the multiplied vector in an expression
gmm::scaled gives a reference to a multiplied vector. This is only a reference, no operation is made
until this reference is used somewhere. For instance:

std::cout << gmm::scaled(V, 10.0) << std::endl;

print to the standard output the vector V multiplied by 10.0 without changing V.

7.2 transposition

gmm::transposed(M) gives a possibility modifiable reference on the transposed matrix of M.

7.3 imaginary and real part

For a complex matrix M or a complex vector V, gmm::real_part(M), gmm::real_part(V),
gmm::imag_part(M) or gmm::imag_part(V) give a possibility modifiable reference on the real
or imaginary part of the matrix or vector (for instance gmm::clear(gmm::imag_part(M)) will
set to zero the imaginary part of a matrix M). These functions cannot be applied to real matrices or
vectors.

17

Gmm++ user documentation, Release 5.4.1

7.4 conjugate

For a matrix M or a vector V, gmm::conjugated(M) and gmm::conjugated(V) give a con-
stant reference on the conjugated vector or matrix. Of course, for a real vectors this has no effect
(and no cost at all). Note : gmm::conjugated(M) transposes the matrix M so that this is the
hermitian conjugate of M. If you need only the conjugate of each component you have to use both
transposition and conjugate with gmm::conjugated(gmm::transposed(M)) or equivalently
gmm::transposed(gmm::conjugated(M)).

7.5 add

addition of vectors or matrices. It is alway possible to mix different type of vector or matrices in the
operations. The following operations are valid:

std::vector<double> V1(10);
gmm::wsvector<double> V2(10);
gmm::clear(V1);
...
gmm::add(V1, V2); // V1 + V2 --> V2
cout << gmm::vref(V2);

gmm::add(V1, gmm::scaled(V2, -2.0), V2); // V1 - 2.0 * V2 --> V2
cout << gmm::vref(V2);

gmm::row_matrix< std::vector<double> > M1(10, 10);
gmm::col_matrix< gmm::wsvector<double> > M2(1000, 1000);

// M1 + (sub matrix of M2) ---> (sub matrix of M2)
gmm::add(M1, gmm::sub_matrix(M2, gmm::sub_interval(4,10)));

IMPORTANT : all the vectors have to have the same size, no resize will be automatically done. If a
vector has not the good size, an error will be thrown.

7.6 mult

Matrix-vector or matrix-matrix multiplication. Again, all the matrices and vectors have to have the good
size. The following operations are valid:

std::vector<double> V1(10);
gmm::wsvector<double> V2(10);
...
gmm::row_matrix< std::vector<double> > M1(10, 10);
...

gmm::mult(M1, V2, V1); // M1 * V2 --> V1

gmm::mult(M1, V2, V2, V1); // M1 * V2 + V2 --> V1

gmm::mult_add(M1, V2, V1); // M1 * V2 + V1 --> V1

gmm::mult(M1, gmm::scaled(V2, -1.0), V2, V1); // M1 * (-V2) + V2 --> V1

(continues on next page)

18 Chapter 7. Basic linear algebra operations

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

gmm::col_matrix< gmm::wsvector<double> > M2(10, 10);
gmm::col_matrix< gmm::vsvector<double> > M3(10, 10);
...

gmm::mult(M1, M2, M3); // M1 * M2 ---> M3

gmm::mult(gmm::sub_matrix(M1, sub_interval(0, 3)),
gmm::sub_matrix(M2, sub_interval(4, 3)),
gmm::sub_matrix(M3, sub_interval(2, 3)));

7.7 norms

gmm::vect_norm1(V) // sum of the modulus of the components of vector V.
gmm::vect_norm2(V) // Euclidean norm of vector V.
gmm::vect_dist2(V1, V2) // Euclidean distance between V1 and V2.
gmm::vect_norminf(V) // infinity norm of vector V.
gmm::mat_euclidean_norm(M) // Euclidean norm of matrix ``M``

// (called also Frobenius norm).
gmm::mat_maxnorm(M) // Max norm (defined as max(|m_ij|; i,j))
gmm::mat_norm1(M) // max(sum(|m_ij|, i), j)
gmm::mat_norminf(M) // max(sum(|m_ij|, j), i)

7.8 trace

gmm::mat_trace(M) gives the trace of matrix M.

7.9 scalar product

for vectors only, gmm::vect_sp(V1, V2) gives the scalar product between V1 and
V2. For complex vectors, this do not conjugate V1, you can use gmm::vect_sp(V1,
gmm::conjugated(V2)) or gmm::vect_hp(V1, V2) which is equivalent.

7.7. norms 19

Gmm++ user documentation, Release 5.4.1

20 Chapter 7. Basic linear algebra operations

CHAPTER 8

Solving triangular systems

If M is a triangular matrix (upper or lower) and X a vector containing the right hand side, the following
procedures solve the system 𝑥←𝑀−1𝑥. The vector X contains the result:

gmm::upper_tri_solve(M, X, false) // Solving an upper triangular system
gmm::upper_tri_solve(M, X, true) // Solving an upper triangular system

// assuming there is 1 on the diagonal
gmm::lower_tri_solve(M, X, false) // Solving a lower triangular system
gmm::lower_tri_solve(M, X, true) // Solving a lower triangular system

// assuming there is 1 on the diagonal

components which are lower the diagonal are ignored by gmm::upper_tri_solve and components
which are upper the diagonal are ignored by gmm::lower_tri_solve.

21

Gmm++ user documentation, Release 5.4.1

22 Chapter 8. Solving triangular systems

CHAPTER 9

Dense LU decomposition

The following procedures are available in the file gmm/gmm_dense_lu.h for dense real and com-
plex matrices (gmm::dense_matrix<T>, gmm::row_matrix< std::vector<T> > and
gmm::col_matrix< std::vector<T> >):

gmm::lu_factor(M, ipvt) : compute the LU factorization of M in M. ipvt
→˓should be

an gmm::lapack_ipvt (of size gmm::mat_nrows(M))
which will contain the indices of the pivots.

gmm::lu_solve(LU, ipvt, x, b) : solve the system LUx = b. LU is the LU
factorization which has to be computed first.

gmm::lu_solve(M, x, b) : solve the system Mx=b calling the lu
→˓factorization on

a copy of M.

gmm::lu_solve_transposed(LU, ipvt, x, b) : solve the system
→˓transposed(LU)x = b.

LU is the LU factorization which
has to be computed first.

gmm::lu_inverse(LU, ipvt, A) : compute the inverse of LU in A. LU is the LU
factorization which has to be computed first

gmm::lu_inverse(A) : invert A calling the LU factorization and the latter
procedure.

gmm::lu_det(LU, ipvt) : compute the determinant of LU. LU is the LU
factorization which has to be computed first

gmm::lu_det(A) : compute the determinant of A calling the LU factorization
and the latter function.

23

Gmm++ user documentation, Release 5.4.1

24 Chapter 9. Dense LU decomposition

CHAPTER 10

Dense QR factorisation, eigenvalues and eigenvectors

The following procedures are available in the file gmm/gmm_dense_qr.h for dense real and com-
plex matrices:

gmm::qr_factor(M, Q, R) // compute the QR factorization of M in Q and R
// (Householder version)

implicit_qr_algorithm(M, eigval, double tol = 1E-16) // compute the
// eigenvalues of M using the implicit QR factorisation (Householder and
// Francis QR step version). eigval should be a vector of appropriate

→˓size
// in which the eigenvalues will be computed. If the matrix have
// complex eigenvalues, please use a complex vector.

implicit_qr_algorithm(M, eigval, shvect, double tol = 1E-16) // idem,
// compute additionally the schur vectors in the matrix shvect.

symmetric_qr_algorithm(M, eigval, double tol = 1E-16) // idem for symmetric
// real and hermitian complex matrices (based on Wilkinson QR step)

symmetric_qr_algorithm(M, eigval, eigvect, double tol = 1E-16) // idem,
// compute additionally the eigenvectors in the matrix eigvect.

Remark: The computation of eigenvectors for non hermitian matrices is not yet implemented. You
can use for the moment the functions geev_interface_left and geev_interface_right
from the LAPACK interface (see gmm/gmm_lapack_interface.h). These LAPACK functions
compute right and left eigenvectors.

The following function defined in the file gmm/gmm_condition_number.h:

gmm::condition_number(M)

compute the condition number of a matrix M. This function uses a dense QR algorithm and thus is only
usable for dense matrices.

25

Gmm++ user documentation, Release 5.4.1

26 Chapter 10. Dense QR factorisation, eigenvalues and eigenvectors

CHAPTER 11

Iterative solvers

Most of the solvers provided in Gmm++ come frorm ITL with slight modifications (gmres has been
optimized and adapted for complex matrices). Include the file gmm/gmm_iter_solvers.h to use
them.

11.1 iterations

The iteration object of Gmm++ is a modification of the one in ITL. This is not a template
type as in ITL.

The simplest initialization is:

gmm::iteration iter(2.0E-10);

where 2.0E-10 is the (relative) residual to be obtained to have the convergence. Some possibilities:

iter.set_noisy(n) // n = 0 : no output
// n = 1 : output of iterations on the standard output
// n = 2 : output of iterations and sub-iterations
// on the standard output
// ...

iter.get_iteration() // after a computation, gives the number of
// iterations made.

iter.converged() // true if the method converged.
iter.set_maxiter(n) // Set the maximum of iterations.

// A solver stops if the maximum of iteration is
// reached, iter.converged() is then false.

11.2 Linear solvers

Here is the list of available linear solvers:

27

Gmm++ user documentation, Release 5.4.1

gmm::row_matrix< std::vector<double> > A(10, 10); // The matrix
std::vector<double> B(10); // Right hand side
std::vector<double> X(10); // Unknown
gmm::identity_matrix PS; // Optional scalar product for cg
gmm::identity_matrix PR; // Optional preconditioner
...
gmm::iteration iter(10E-9);// Iteration object with the max residu
size_t restart = 50; // restart parameter for GMRES

gmm::cg(A, X, B, PS, PR, iter); // Conjugate gradient

gmm::bicgstab(A, X, B, PR, iter); // BICGSTAB BiConjugate Gradient
→˓Stabilized

gmm::gmres(A, X, B, PR, restart, iter) // GMRES generalized minimum
→˓residual

gmm::qmr(A, X, B, PR, iter) // Quasi-Minimal Residual method.

gmm::least_squares_cg(A, X, B, iter) // unpreconditionned least square CG.

The solver gmm::constrained_cg(A, C, X, B, PS, PR, iter); solve a system with
linear constraints, C is a matrix which represents the constraints. But it is still experimental.

(Version 1.7) The solver gmm::bfgs(F, GRAD, X, restart, iter) is a BFGS quasi-Newton
algorithm with a Wolfe line search for large scale problems. It minimizes the function F without con-
straints, be given its gradient GRAD. restart is the max number of stored update vectors.

11.3 Preconditioners

The following preconditioners, to be used with linear solvers, are available:

gmm::identity_matrix P; // No preconditioner

gmm::diagonal_precond<matrix_type> P(SM); // diagonal preconditioner

gmm::mr_approx_inverse_precond<matrix_type> P(SM, 10, 10E-17);
// preconditioner based on MR
// iterations

gmm::ildlt_precond<matrix_type> P(SM); // incomplete (level 0) ldlt
// preconditioner. Fast to be
// computed but less efficient than
// gmm::ildltt_precond.

// incomplete ldlt with k fill-in and threshold preconditioner.
// Efficient but could be costly.
gmm::ildltt_precond<matrix_type> P(SM, k, threshold);

gmm::ilu_precond<matrix_type> P(SM); // incomplete (level 0) ilu
// preconditioner. Very fast to be
// computed but less efficient than
// gmm::ilut_precond.

(continues on next page)

28 Chapter 11. Iterative solvers

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

// incomplete LU with k fill-in and threshold preconditioner.
// Efficient but could be costly.
gmm::ilut_precond<matrix_type> P(SM, k, threshold);

// incomplete LU with k fill-in, threshold and column pivoting
→˓preconditioner.
// Try it when ilut encounter too small pivots.
gmm::ilutp_precond<matrix_type> P(SM, k, threshold);

Except ildltt_precond, all these precontionners come from ITL. ilut_precond has been
optimized and simplified and cholesky_precond has been corrected and transformed in an in-
complete LDLT preconditioner for stability reasons (similarly, we add choleskyt_precond which
is in fact an incomplete LDLT with threshold preconditioner). Of course, ildlt_precond and
ildltt_precond are designed for symmetric real or hermitian complex matrices to be use princi-
pally with cg.

11.4 Additive Schwarz method

The additive Schwarz method is a decomposition domain method allowing the resolution of huge linear
systems (see [?] for the principle of the method).

For the moment, the method is not parallelized (this should be done . . .). The call is the following:

gmm::sequential_additive_schwarz(A, u, f, P, vB, iter, local_solver,
→˓global_solver)

A is the matrix of the linear system. u is the unknown vector. f is the right hand side. P
is an eventual preconditioner for the local solver. vB is a vector of rectangular sparse matri-
ces (of type const std::vector<vBMatrix>, where vBMatrix is a sparse matrix
type), each of these matrices is of size 𝑁 × 𝑁𝑖 where 𝑁 is the size of A and 𝑁𝑖 the number
of variables in the 𝑖𝑡ℎ sub-domain ; each column of the matrix is a base vector of the sub-space
representing the 𝑖𝑡ℎ sub-domain. iter is an iteration object. local_solver has to be chosen
in the list gmm::using_gmres(), gmm::using_bicgstab(), gmm::using_cg(),
gmm::using_qmr() and gmm::using_superlu() if SuperLu is installed. global_solver
has to be chosen in the list gmm::using_gmres(), gmm::using_bicgstab(),
gmm::using_cg(), gmm::using_qmr().

The test program schwarz_additive.C is the directory tests of GetFEM is an example of the
resolution with the additive Schwarz method of an elastostatic problem with the use of coarse mesh to
make a better preconditioning (i.e. one of the sub-domains represents in fact a coarser mesh).

In the case of multiple solves with the same linear system, it is possible to store the preconditioners or
the LU factorizations to save computation time.

A (too) simple program in gmm/gmm_domain_decomp.h allows to build a regular domain decom-
position with a certain ratio of overlap. It directly produces the vector of matrices vB for the additive
Schwarz method.

11.4. Additive Schwarz method 29

Gmm++ user documentation, Release 5.4.1

11.5 Range basis function

The function gmm_range_basis(B, columns, EPS=1e-12) defined in gmm/
gmm_range_basis.h allows to select from the columns of a sparse matrix B a basis of the range
of this matrix. The result is returned in columns which should be of type std::set<size_type>
and which contains the indices of the selected columns.

The algorithm is specially designed to select independent constraints from a large matrix with linearly
dependent columns.

There is four step in the implemented algorithm

• Elimination of null columns.

• Selection of a set of already orthogonal columns.

• Elimination of locally dependent columns by a blockwise Gram-Schmidt algorithm.

• Computation of vectors of the remaining null space by a global restarted Lanczos algorithm and
deduction of some columns to be eliminated.

The algorithm is efficient if after the local Gram-Schmidt algorithm it remains a low dimension null
space. The implemented restarted Lanczos algorithm find the null space vectors one by one.

The Global restarted Lanczos algorithm may be improved or replaced by a block Lanczos method (see
[?] for instance), a block Wiedelann method (in order to be parallelized) or simply the computation of
more than one vector of the null space at each iteration.

30 Chapter 11. Iterative solvers

CHAPTER 12

Catch errors

Errors used in Gmm++ are defined in the file gmm/gmm_except.h. In order to make easier the error
catching all errors derive from the type std::logic_error defined in the file ‘‘ stdexcept‘‘ of the
S.T.L.

A standard procedure, GMM_STANDARD_CATCH_ERROR, is defined in gmm/gmm_except.h. This
procedure catches all errors and print the error message when an error occurs. It can be used in the main
procedure of the program as follows:

int main(void) {
try {

... main program ...
}

GMM_STANDARD_CATCH_ERROR;
}

It is highly recommended to catch the errors at least in the main function, because if you do not so, you
will not be able to see error messages.

31

Gmm++ user documentation, Release 5.4.1

32 Chapter 12. Catch errors

CHAPTER 13

Interface with BLAS, LAPACK or ATLAS

For better performance on dense matrices, it is possible to interface some operations of
the type gmm::dense_matrix<T> with LAPACK (http://www.netlib.org/lapack/) or ATLAS
(http://math-atlas.sourceforge.net/), for T = float, double, std::complex<float> or
std::complex<double>. In fact, concerning ATLAS no specific interface has been made until
now, so the fortran interface of ATLAS should be used.

to use this interface you have first to define GMM_USES_LAPACK before including Gmm++ files:

#define GMM_USES_LAPACK
#include <gmm/gmm.h>

... your code

or specify -DGMM_USES_LAPACK on the command line of your compiler. Of course, you have also
to link LAPACK or ATLAS libraries. For example on a standard linux configuration and g++ compiler
the adding libraries to link LAPACK are:

g++ ... -llapack -lblas -lgfortanbegin -lgfortran

and to link ATLAS:

g++ ... /usr/lib/atlas/liblapack.a /usr/lib/atlas/libblas.a -latlas -
→˓lgfortranbegin -lgfortran

The library libgfortranbegin and libgfortran are specific to g++ compiler and may vary for
other compilers.

Ask your system administrator if this configuration does not work.

The following operations are interfaced:

vect_norm2(std::vector<T>)

vect_sp(std::vector<T>, std::vector<T>)
vect_sp(scaled(std::vector<T>), std::vector<T>)

(continues on next page)

33

http://www.netlib.org/lapack/
http://math-atlas.sourceforge.net/

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

vect_sp(std::vector<T>, scaled(std::vector<T>))
vect_sp(scaled(std::vector<T>), scaled(std::vector<T>))

vect_hp(std::vector<T>, std::vector<T>)
vect_hp(scaled(std::vector<T>), std::vector<T>)
vect_hp(std::vector<T>, scaled(std::vector<T>))
vect_hp(scaled(std::vector<T>), scaled(std::vector<T>))

add(std::vector<T>, std::vector<T>)
add(scaled(std::vector<T>, a), std::vector<T>)

mult(dense_matrix<T>, dense_matrix<T>, dense_matrix<T>)
mult(transposed(dense_matrix<T>), dense_matrix<T>, dense_matrix<T>)
mult(dense_matrix<T>, transposed(dense_matrix<T>), dense_matrix<T>)
mult(transposed(dense_matrix<T>), transposed(dense_matrix<T>),

dense_matrix<T>)
mult(conjugated(dense_matrix<T>), dense_matrix<T>, dense_matrix<T>)
mult(dense_matrix<T>, conjugated(dense_matrix<T>), dense_matrix<T>)
mult(conjugated(dense_matrix<T>), conjugated(dense_matrix<T>),

dense_matrix<T>)

mult(dense_matrix<T>, std::vector<T>, std::vector<T>)
mult(transposed(dense_matrix<T>), std::vector<T>, std::vector<T>)
mult(conjugated(dense_matrix<T>), std::vector<T>, std::vector<T>)
mult(dense_matrix<T>, scaled(std::vector<T>), std::vector<T>)
mult(transposed(dense_matrix<T>), scaled(std::vector<T>),

std::vector<T>)
mult(conjugated(dense_matrix<T>), scaled(std::vector<T>),

std::vector<T>)

mult_add(dense_matrix<T>, std::vector<T>, std::vector<T>)
mult_add(transposed(dense_matrix<T>), std::vector<T>, std::vector<T>)
mult_add(conjugated(dense_matrix<T>), std::vector<T>, std::vector<T>)
mult_add(dense_matrix<T>, scaled(std::vector<T>), std::vector<T>)
mult_add(transposed(dense_matrix<T>), scaled(std::vector<T>),

std::vector<T>)
mult_add(conjugated(dense_matrix<T>), scaled(std::vector<T>),

std::vector<T>)

mult(dense_matrix<T>, std::vector<T>, std::vector<T>, std::vector<T>)
mult(transposed(dense_matrix<T>), std::vector<T>, std::vector<T>,

std::vector<T>)
mult(conjugated(dense_matrix<T>), std::vector<T>, std::vector<T>,

std::vector<T>)
mult(dense_matrix<T>, scaled(std::vector<T>), std::vector<T>,

std::vector<T>)
mult(transposed(dense_matrix<T>), scaled(std::vector<T>),

std::vector<T>, std::vector<T>)
mult(conjugated(dense_matrix<T>), scaled(std::vector<T>),

std::vector<T>, std::vector<T>)
mult(dense_matrix<T>, std::vector<T>, scaled(std::vector<T>),

std::vector<T>)
mult(transposed(dense_matrix<T>), std::vector<T>,

scaled(std::vector<T>), std::vector<T>)
mult(conjugated(dense_matrix<T>), std::vector<T>,

scaled(std::vector<T>), std::vector<T>)
(continues on next page)

34 Chapter 13. Interface with BLAS, LAPACK or ATLAS

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

mult(dense_matrix<T>, scaled(std::vector<T>), scaled(std::vector<T>),
std::vector<T>)

mult(transposed(dense_matrix<T>), scaled(std::vector<T>),
scaled(std::vector<T>), std::vector<T>)

mult(conjugated(dense_matrix<T>), scaled(std::vector<T>),
scaled(std::vector<T>), std::vector<T>)

lower_tri_solve(dense_matrix<T>, std::vector<T>, k, b)
upper_tri_solve(dense_matrix<T>, std::vector<T>, k, b)
lower_tri_solve(transposed(dense_matrix<T>), std::vector<T>, k, b)
upper_tri_solve(transposed(dense_matrix<T>), std::vector<T>, k, b)
lower_tri_solve(conjugated(dense_matrix<T>), std::vector<T>, k, b)
upper_tri_solve(conjugated(dense_matrix<T>), std::vector<T>, k, b)

lu_factor(dense_matrix<T>, std::vector<int>)
lu_solve(dense_matrix<T>, std::vector<T>, std::vector<T>)
lu_solve(dense_matrix<T>, std::vector<int>, std::vector<T>,

std::vector<T>)
lu_solve_transposed(dense_matrix<T>, std::vector<int>, std::vector<T>,

std::vector<T>)
lu_inverse(dense_matrix<T>)
lu_inverse(dense_matrix<T>, std::vector<int>, dense_matrix<T>)

qr_factor(dense_matrix<T>, dense_matrix<T>, dense_matrix<T>)

implicit_qr_algorithm(dense_matrix<T>, std::vector<T>)
implicit_qr_algorithm(dense_matrix<T>, std::vector<T>,

dense_matrix<T>)
implicit_qr_algorithm(dense_matrix<T>, std::vector<std::complex<T> >)
implicit_qr_algorithm(dense_matrix<T>, std::vector<std::complex<T> >,

dense_matrix<T>)

Of course, it is not difficult to interface another operation if needed.

The following interface does not correspond to an algorithm existing in Gmm++:

The interface to gesvd (singular value decomposition):

svd(dense_matrix<T> &X, dense_matrix<T> &U,
dense_matrix<T> &Vt, std::vector<T> sigma);

svd(dense_matrix<std::complex<T> > &X, dense_matrix<std::complex<T> > &U,
dense_matrix<std::complex<T> > &Vt, std::vector<T> sigma);

35

Gmm++ user documentation, Release 5.4.1

36 Chapter 13. Interface with BLAS, LAPACK or ATLAS

CHAPTER 14

Interface with SuperLU

It is possible to call SuperLU 3.0 (https://portal.nersc.gov/project/sparse/superlu/superlu_3.0.tar.gz)
from Gmm++. The following function defined in the file gmm/gmm_superlu_interface.h is
available:

SuperLU_solve(A, X, B, condest, permc_spec = 1)

solves the system AX = B where A is a sparse matrix of base type float, double,
std::complex<float>, or std::complex<double>. permc_spec should be 0, 1 or 2
for respectively use the natural ordering, use minimum degree ordering on structure of A'A or use min-
imum degree ordering on structure of A'+A (1 is the default value), condest should be a reference on
a double, it returns an estimate of the condition number of the matrix A.

To use these functions, you need to install SuperLU and compile your code with the additional options:

g++ ... -DGMM_USES_SUPERLU (dir_of_superlu)/superlu.a -lblas -I(dir_of_
→˓superlu)

Some other functionalities of SuperLU can be interfaced.

37

https://portal.nersc.gov/project/sparse/superlu/superlu_3.0.tar.gz

Gmm++ user documentation, Release 5.4.1

38 Chapter 14. Interface with SuperLU

CHAPTER 15

How to use Gmm++ with QD type (double-double and quad-double)

The QD library (see http://www.cs.berkeley.edu/verb~yozo or http://www.nersc.gov/verb~dhb/mpdist/
mpdist.html) is an efficient library for double-double (32 decimal digits) and quad-double (approx. 64
decimal digits). Once you installed this library on your system you have to link your program with QD
library (with -lqd). In your program, include the header files of QD with:

#include <qd/dd.h>
#include <qd/qd.h>
#include <qd/fpu.h>

Then the two type dd_real and qd_real will be usable with Gmm++. You will also be able to use
std::complex<dd_real> and std::complex<qdreal>

IMPORTANT : do not forget to initialize QD before using it with the following call:

unsigned int old_cw;
fpu_fix_start(&old_cw);

This disables the 80 bits precision of x86 processors which conflicts with QD. Once you finished to use
QD you can reactivate it with:

fpu_fix_end(&old_cw);

(see the QD documentation for more details).

39

http://www.cs.berkeley.edu/verb~yozo
http://www.nersc.gov/verb~dhb/mpdist/mpdist.html
http://www.nersc.gov/verb~dhb/mpdist/mpdist.html

Gmm++ user documentation, Release 5.4.1

40 Chapter 15. How to use Gmm++ with QD type (double-double and quad-double)

CHAPTER 16

First steps with Gmm++

16.1 How can I invert a matrix ?

It is not possible in Gmm++ to invert all kind of matrices. For the moment, the only mean to invert a
matrix is to use the dense LU decomposition (thus, only for dense matrices). An example:

gmm::dense_matrix<double> M(3, 3), M2(3,3), M3(3,3);
gmm::copy(gmm::identity_matrix(), M); // M = Id.
gmm::scale(M, 2.0); // M = 2 * Id.
M(1,2) = 1.0;

gmm::copy(M, M2);

gmm::lu_inverse(M);

gmm::mult(M, M2, M3);

std::cout << M << " times " << M2 << " is equal to " << M3 << endl;

see the section corresponding to dense LU decomposition for more details. The
type gmm::dense_matrix<double> can be replaced by gmm::row_matrix<
std::vector<double> > or gmm::col_matrix< std::vector<double> >.

16.2 How can I solve a linear system ?

You have more than one possibility to solve a linear system. If you have a dense matrix, the best may be
to use the LU decomposition. An example:

gmm::dense_matrix<double> M(3, 3);
gmm::clear(M); // M = 0.
M(0,0) = M(1,1) = M(2,2) = 2.0; // M = 2 * Id.
M(1,2) = 1.0;

(continues on next page)

41

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

std::vector<double> X(3), B(3), Bagain(3);
B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; // B = [1 2 3]

gmm::lu_solve(M, X, B);

gmm::mult(M, X, Bagain);

std::cout << M << " times " << gmm::vref(X) << " is equal to " <<
→˓gmm::vref(Bagain) << endl;

If, now, you have a sparse system coming for example from a pde discretization, you have various
iterative solvers, with or without preconditioners. This is an example with a precontionned GMRES:

int nbdof = 1000; // number of degrees of freedom.
gmm::row_matrix< gmm::rsvector<double> > M(nbdof, nbdof); // a sparse
→˓matrix
std::vector<double> X(nbdof), B(nbdof); // Unknown and left hand side.

... here the assembly of the pde discretization stiffness matrix ...

... and left hand side ...

// computation of a preconditioner (ILUT)
gmm::ilut_precond< gmm::row_matrix< gmm::rsvector<double> > > P(M, 10, 1e-
→˓4);

gmm::iteration iter(1E-8); // defines an iteration object, with a max
→˓residu of 1E-8

gmm::gmres(M, X, B, P, 50, iter); // execute the GMRES algorithm

std::cout << "The result " << gmm::vref(X) << endl;

16.3 How can I transform a vector into a matrix and reshape it ?

In Gmm++, a vector is not considered as a matrix. If you need to use a vector as a (1 by n) row matrix
or (n by 1) column matrix in a computation, you have to use:

gmm::row_vector(V) // gives a reference on V considered as
// a (1 by n) row matrix

gmm::col_vector(V) // gives a reference on V considered as
// a (n by 1) col matrix

for instance, you can transform a vector into a dense matrix with:

std::vector<double> V(50);

// ... computation of V

gmm::dense_matrix<double> M(1, gmm::vect_size(V));
gmm::copy(gmm::row_vector(V), M);

Then you can also reshape matrix M with:

42 Chapter 16. First steps with Gmm++

Gmm++ user documentation, Release 5.4.1

gmm::reshape(M, 10, 5);

16.4 What is the better way to resize a matrix ?

You can change the dimensions of a matrix, if it is not a reference, using:

gmm::resize(M, m, n);

This function respects the intersection between the original matrix and the resized matrix, and new com-
ponents are set to zero. An important thing is that it is based on the resize method of std::vector,
thus no memory free is done when the size of the new matrix is smaller than the original one.

If you do not need to keep old values of the components, or if you want to really free the surplus of
memory, you can resize a matrix using std::swap as follows:

MATRIX_TYPE M(m1, n1);

... your code

{ MATRIX_TYPE(m2, n2) M2; std::swap(M, M2); } // resize matrix M.

Of course, this works also for a vector.

16.4. What is the better way to resize a matrix ? 43

Gmm++ user documentation, Release 5.4.1

44 Chapter 16. First steps with Gmm++

CHAPTER 17

Deeper inside Gmm++

17.1 The linalg_traits structure

The major principle of Gmm++ is that each vector and matrix type has a corresponding structure (which
is never instantiated) named linalg_traits containing all informations on it. For instance, the
component linalg_type of this structure is set to abstract_vector or abstract_matrix
if the corresponding type represent a vector or a matrix. If V is an interfaced type of vector and M an
interface type of matrix, it is possible to access to this component with:

typename gmm::linalg_traits<V>::linalg_type ... // should be abstract_
→˓vector
typename gmm::linalg_traits<M>::linalg_type ... // should be abstract_
→˓matrix

The types abstract_vector and abstract_matrix are defined in gmm/gmm_def.h. They
are void type allowing to specialize generic algorithms.

For a vector type, the following informations are available:

typename gmm::linalg_traits<V>::value_type --> type of the components
→˓of the

vector
typename gmm::linalg_traits<V>::reference --> type of reference on a
→˓component
typename gmm::linalg_traits<V>::is_reference --> if the vector is a
→˓simple

reference or an
→˓instantiated vector
typename gmm::linalg_traits<V>::linalg_type --> should be abstract_
→˓vector
typename gmm::linalg_traits<V>::index_sorted --> linalg_true or linalg_
→˓false
typename gmm::linalg_traits<V>::const_iterator --> const iterator to
→˓iterate on the

components of the
→˓vector in (continues on next page)

45

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

order to read them.
typename gmm::linalg_traits<V>::iterator --> iterator to iterate on
→˓the

components of the
→˓vector in

order to read or write
→˓them.
typename gmm::linalg_traits<V>::storage_type --> should be abstract_
→˓sparse,

abstract_skyline or
abstract_dense

typename gmm::linalg_traits<V>::origin_type --> the type of vector
→˓itself

or the type of
→˓referenced

vector for a reference.

gmm::linalg_traits<V>::size(v) --> a method which gives the size of
→˓the vector.
gmm::linalg_traits<V>::begin(v) --> a method which gives an iterator on
→˓the

beginning of the vector
gmm::linalg_traits<V>::end(v) --> iterator on the end of the vector
gmm::linalg_traits<V>::origin(v) --> gives a void pointer allowing to
→˓identify

the vector
gmm::linalg_traits<V>::do_clear(v) --> make a clear on the vector

gmm::linalg_traits<V>::access(o, it, ite, i) --> return the ith component
→˓or a

reference on the ith component. o
→˓is a

pointer o type ``origin_type *'' or
``const origin_type *''.

gmm::linalg_traits<V>::clear(o, it, ite) --> clear the vector. o is a
pointer o type ``origin_type *'' or
``const origin_type *''.

and for a matrix type:

typename gmm::linalg_traits<M>::value_type --> type of the components
→˓of the

matrix
typename gmm::linalg_traits<M>::reference --> type of reference on a
→˓component
typename gmm::linalg_traits<M>::is_reference --> if the matrix is a
→˓simple

reference or an
→˓instantiated matrix
typename gmm::linalg_traits<M>::linalg_type --> should be abstract_
→˓matrix
typename gmm::linalg_traits<M>::storage_type --> should be abstract_
→˓sparse,

abstract_skyline or
(continues on next page)

46 Chapter 17. Deeper inside Gmm++

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

abstract_dense
typename gmm::linalg_traits<M>::index_sorted --> linalg_true or linalg_
→˓false
typename gmm::linalg_traits<M>::sub_orientation --> should be row_major,
→˓col_major

row_and_col or col_and_
→˓row.
typename gmm::linalg_traits<M>::sub_col_type --> type of reference on
→˓a column

(if the matrix is not
→˓row_major)
typename gmm::linalg_traits<M>::const_sub_col_type --> type of const
→˓reference on a

column
typename gmm::linalg_traits<M>::col_iterator --> iterator on the
→˓columns
typename gmm::linalg_traits<M>::const_col_iterator --> const iterator on
→˓the columns
typename gmm::linalg_traits<M>::sub_row_type --> type of reference on
→˓a row

(if the matrix is not
→˓col_major)
typename gmm::linalg_traits<M>::const_sub_row_type --> type of const
→˓reference on a

row
typename gmm::linalg_traits<M>::const_row_iterator --> const iterator on
→˓the rows
typename gmm::linalg_traits<M>::row_iterator --> iterator on the rows

typename gmm::linalg_traits<M>::origin_type --> the type of vector
→˓itself

or the type of
→˓referenced

vector for a reference.

gmm::linalg_traits<M>::nrows(m) --> methods which gives the number of
→˓rows of

the matrix
gmm::linalg_traits<M>::ncols(m) --> number of columns
gmm::linalg_traits<M>::row_begin(m) --> iterator on the first row (if not
→˓col_major)
gmm::linalg_traits<M>::row_end(m) --> iterator on the end of the rows
gmm::linalg_traits<M>::col_begin(m) --> iterator on the first column

(if not row_major)
gmm::linalg_traits<M>::col_end(m) --> iterator on the end of the columns
gmm::linalg_traits<M>::row(it) --> gives the reference on a row with
→˓an iterator

(if not col_major)
gmm::linalg_traits<M>::col(it) --> gives the reference on a column
→˓with an

iterator (if not row_major)
gmm::linalg_traits<M>::origin(m) --> gives a void pointer allowing to
→˓identify

the matrix
gmm::linalg_traits<M>::access(it,i) --> return the ith component or a
→˓reference

(continues on next page)

17.1. The linalg_traits structure 47

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

on the ith component of the row or
column pointed by it.

gmm::linalg_traits<M>::do_clear(m) --> make a clear on the matrix

This is this structure you have to fill in to interface a new vector or matrix type. You can see some
examples in gmm/gmm_interface.h . Most of the generic algorithms are in gmm/gmm_blas.h .

17.2 How to iterate on the components of a vector

Here is an example which accumulate the components of a vector. It is assumed that V is a vector type
and v an instantiated vector:

typename gmm::linalg_traits<V>::value_type r(0); // scalar in which we
→˓accumulate
typename gmm::linalg_traits<V>::const_iterator it = vect_const_begin(v); //
→˓ beginning of v
typename gmm::linalg_traits<V>::const_iterator ite = vect_const_end(v); //
→˓end of v

for (; it != ite; ++it) // loop on the components
r += *it; // accumulate the components

This piece of code will work with every kind of interfaced vector.

For sparse or skyline vectors, it is possible to obtain the index of the components pointed by the iterator
with it.index(). Here is the example of the scalar product of two sparse or skyline vectors, assuming
V1 and V2 are two vector types and v1, v2 two corresponding instantiated vectors:

typename gmm::linalg_traits<V1>::const_iterator it1 = vect_const_begin(v1),
typename gmm::linalg_traits<V1>::const_iterator ite1 = vect_const_end(v1);
typename gmm::linalg_traits<V2>::const_iterator it2 = vect_const_begin(v2),
typename gmm::linalg_traits<V2>::const_iterator ite2 = vect_const_end(v2);
typename gmm::linalg_traits<V1>::value_type r(0); // it is assumed that V2
→˓have a

// compatible value_type

while (it1 != ite1 && it2 != ite2) { // loops on the components
if (it1.index() == it2.index()) {

res += (*it1) * (*it2)); // if the indices are equals
→˓accumulate

++it1;
++it2;

}
else if (it1.index() < it2.index())

++it1;
else

++it2;
}

This algorithm use the fact that indices are increasing in a sparse vector. This code will not work for
dense vectors because dense vector iterators do not have the method it.index().

48 Chapter 17. Deeper inside Gmm++

Gmm++ user documentation, Release 5.4.1

17.3 How to iterate on a matrix

You can iterate on the rows of a matrix if it is not a column major matrix and on the columns of a matrix
if it is not a row major matrix (the type gmm::dense_matrix<T> has is sub orientation type as
col_and_rox, so you can iterate on both rows and columns).

If you need not to be optimal, you can use a basic loop like that:

for (size_t i = 0; i < gmm::mat_nrows(m); ++i) {
typename gmm::linalg_traits<M>::const_sub_row_type row = mat_const_row(M,

→˓ i);

...

std::cout << "norm of row " << i << " : " << vect_norm2(row) <<
→˓std::endl;
}

But you can also use iterators, like that:

typename gmm::linalg_traits<M>::const_row_iterator it = mat_row_const_
→˓begin(m);
typename gmm::linalg_traits<M>::const_row_iterator ite = mat_row_const_
→˓end(m);

for (; it != ite; ++it) {
typename gmm::linalg_traits<M>::const_sub_row_type

row = gmm::linalg_traits<M>::row(it);

...

std::cout << "norm of row " << i << " : " << vect_norm2(row) <<
→˓std::endl;
}

17.4 How to make your algorithm working on all type of matrices

For this, you will generally have to specialize it. For instance, let us take a look at the code for
gmm::nnz which count the number of stored components (in fact, the real gmm::nnz algorithm is
specialized in most of the cases so that it does not count the components one by one):

template <class L> inline size_type nnz(const L& l) {
return nnz(l, typename linalg_traits<L>::linalg_type());

}

template <class L> inline size_type nnz(const L& l, abstract_vector) {
typename linalg_traits<L>::const_iterator it = vect_const_begin(l);
typename linalg_traits<L>::const_iterator ite = vect_const_end(l);
size_type res(0);
for (; it != ite; ++it) ++res;
return res;

}

template <class L> inline size_type nnz(const L& l, abstract_matrix) {
(continues on next page)

17.3. How to iterate on a matrix 49

Gmm++ user documentation, Release 5.4.1

(continued from previous page)

return nnz(l, typename principal_orientation_type<typename
linalg_traits<L>::sub_orientation>::potype());

}

template <class L> inline size_type nnz(const L& l, row_major) {
size_type res(0);
for (size_type i = 0; i < mat_nrows(l); ++i)

res += nnz(mat_const_row(l, i));
return res;

}

template <class L> inline size_type nnz(const L& l, col_major) {
size_type res(0);
for (size_type i = 0; i < mat_ncols(l); ++i)

res += nnz(mat_const_col(l, i));
return res;

}

The first function dispatch on the second or the third function respectively if the parameter is a vector
or a matrix. The third function dispatch again on the fourth and the fifth function respectively if the
matrix is row_major or column major. Of course, as the function are declared inline, at least the two
dispatcher functions will not be implemented. Which means that this construction is not costly.

50 Chapter 17. Deeper inside Gmm++

CHAPTER 18

How to disable verifications

On some type of matrices such as gmm::dense_matrix some verification are made on the range
of indices. This could deteriorate the performance of your code but is satisfactory in the development
stage. You can disable these verifications adding a -dNDEBUG to the compiler options.

51

	Introduction
	Installation
	Matrix and Vector type provided by Gmm++
	dense vectors
	sparse vectors
	skyline vectors
	generic row and column matrices
	dense matrices
	sparse matrices

	Input and output with Harwell-Boeing and Matrix Market formats
	sub-vectors and sub-matrices
	row and column of a matrix

	Miscellaneous methods
	Basic linear algebra operations
	scale and scaled
	transposition
	imaginary and real part
	conjugate
	add
	mult
	norms
	trace
	scalar product

	Solving triangular systems
	Dense LU decomposition
	Dense QR factorisation, eigenvalues and eigenvectors
	Iterative solvers
	iterations
	Linear solvers
	Preconditioners
	Additive Schwarz method
	Range basis function

	Catch errors
	Interface with BLAS, LAPACK or ATLAS
	Interface with SuperLU
	How to use Gmm++ with QD type (double-double and quad-double)
	First steps with Gmm++
	How can I invert a matrix ?
	How can I solve a linear system ?
	How can I transform a vector into a matrix and reshape it ?
	What is the better way to resize a matrix ?

	Deeper inside Gmm++
	The linalg_traits structure
	How to iterate on the components of a vector
	How to iterate on a matrix
	How to make your algorithm working on all type of matrices

	How to disable verifications

