
RFC 9427

TLS-Based Extensible Authentication Protocol (EAP)

Types for Use with TLS 1.3

Abstract

The Extensible Authentication Protocol-TLS (EAP-TLS) (RFC 5216) has been updated for TLS 1.3 in

RFC 9190. Many other EAP Types also depend on TLS, such as EAP-Flexible Authentication via

Secure Tunneling (EAP-FAST) (RFC 4851), EAP-Tunneled TLS (EAP-TTLS) (RFC 5281), the Tunnel

Extensible Authentication Protocol (TEAP) (RFC 7170). It is possible that many vendor-specific

EAP methods, such as the Protected Extensible Authentication Protocol (PEAP), depend on TLS as

well. This document updates those methods in order to use the new key derivation methods

available in TLS 1.3. Additional changes necessitated by TLS 1.3 are also discussed.

Stream:

RFC:

Updates:

Category:

Published:

ISSN:

Author:

Internet Engineering Task Force (IETF)

9427

4851, 5281, 7170

Standards Track

June 2023

2070-1721

 A. DeKok

FreeRADIUS

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9427

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

DeKok Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9427
https://www.rfc-editor.org/rfc/rfc4851
https://www.rfc-editor.org/rfc/rfc5281
https://www.rfc-editor.org/rfc/rfc7170
https://www.rfc-editor.org/info/rfc9427

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

2. Using TLS-Based EAP Methods with TLS 1.3

2.1. Key Derivation

2.2. TEAP

2.2.1. Client Certificates

2.3. EAP-FAST

2.3.1. Client Certificates

2.4. EAP-TTLS

2.4.1. Client Certificates

2.5. PEAP

2.5.1. Client Certificates

3. Application Data

3.1. Identities

4. Resumption

5. Security Considerations

5.1. Handling of TLS NewSessionTicket Messages

5.2. Protected Success and Failure Indications

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 2

https://trustee.ietf.org/license-info

Author's Address

1. Introduction

EAP-TLS has been updated for TLS 1.3 in . Many other EAP Types also depend on TLS,

such as EAP-FAST , EAP-TTLS , and TEAP . It is possible that many

vendor-specific EAP methods, such as PEAP , depend on TLS as well. All of these methods

use key derivation functions that are no longer applicable to TLS 1.3; thus, these methods are

incompatible with TLS 1.3.

This document updates these methods in order to be used with TLS 1.3. These changes involve

defining new key derivation functions. We also discuss implementation issues in order to

highlight differences between TLS 1.3 and earlier versions of TLS.

[RFC9190]

[RFC4851] [RFC5281] [RFC7170]

[PEAP]

1.1. Requirements Language

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Using TLS-Based EAP Methods with TLS 1.3

In general, all of the requirements in apply to other EAP methods that wish to use TLS

1.3. Unless otherwise required herein, implementations of EAP methods that wish to use TLS 1.3

 follow the guidelines in .

There remain some differences between EAP-TLS and other TLS-based EAP methods that are

addressed by this document. The main difference is that uses the EAP-TLS Type (value

0x0D) in a number of calculations, whereas other method types will use their own Type value

instead of the EAP-TLS Type value. This topic is discussed further in Section 2.1.

An additional difference is that requires the EAP server to send a

protected success result indication once the EAP-TLS handshake has completed. This indication is

composed of one octet (0x00) of application data. Other TLS-based EAP methods also use this

result indication, but only during resumption. When other TLS-based EAP methods use full

authentication, the result indication is not needed or used. This topic is explained in more detail

in Sections 3 and 4.

Finally, this document includes clarifications on how various TLS- based parameters are

calculated when using TLS 1.3. These parameters are different for each EAP method, so they are

discussed separately.

[RFC9190]

MUST [RFC9190]

[RFC9190]

[RFC9190], Section 2.5

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc9190#section-2.5

2.1. Key Derivation

The key derivation for TLS-based EAP methods depends on the value of the EAP Type as defined

by in the "Extensible Authentication Protocol (EAP) Registry". The most important

definition is of the Type field, as first defined in :

Type = value of the EAP Method type

For the purposes of this specification, when we refer to logical Type, we mean that the logical

Type is defined as one octet for values smaller than 254 (the value for the Expanded Type). When

Expanded EAP Types are used, the logical Type is defined as the concatenation of the fields

required to define the Expanded Type, including the Type with value 0xfe, Vendor-Id (in network

byte order), and Vendor-Type fields (in network byte order) defined in , as

given below:

This definition does not alter the meaning of Type in or change the structure of EAP

packets. Instead, this definition allows us to simplify references to EAP Types by using a logical

"Type" instead of referring to "the Type field or the Type field with value 0xfe, plus the Vendor-ID

and Vendor-Type". For example, the value of Type for PEAP is simply 0x19.

Note that unlike TLS 1.2 and earlier, the calculation of the TLS-Exporter function depends on the

length passed to it. Therefore, implementations pass the correct length instead of passing a

large length and truncating the output. Any output calculated using a larger length value, which

is then truncated, will be different from the output that was calculated using the correct length.

Unless otherwise discussed below, the key derivation functions for all TLS-based EAP Types are

defined in and reproduced here for clarity. These definitions include ones

for the Master Session Key (MSK) and the Extended Master Session Key (EMSK):

We note that these definitions reuse the EAP-TLS exporter labels and change the derivation only

by adding a dependency on the logical Type. The reason for this change is simplicity. The

inclusion of the EAP Type makes the derivation method specific. There is no need to use different

labels for different EAP Types as was done earlier.

These definitions apply in their entirety to EAP-TTLS and PEAP as defined in

and . Some definitions apply to EAP-FAST and TEAP with exceptions as noted below.

[IANA]

[RFC3748], Section 2

[RFC3748], Section 5.7

Type = 0xFE || Vendor-Id || Vendor-Type

[RFC3748]

MUST

[RFC9190], Section 2.3

Key_Material = TLS-Exporter("EXPORTER_EAP_TLS_Key_Material",
 Type, 128)
Method-Id = TLS-Exporter("EXPORTER_EAP_TLS_Method-Id",
 Type, 64)
Session-Id = Type || Method-Id
MSK = Key_Material(0, 63)
EMSK = Key_Material(64, 127)

[RFC5281] [PEAP]

[MSPEAP]

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc3748#section-2
https://www.rfc-editor.org/rfc/rfc3748#section-5.7
https://www.rfc-editor.org/rfc/rfc9190#section-2.3

It is that vendor-defined and TLS-based EAP methods use the above definitions

for TLS 1.3. There is no compelling reason to use different definitions.

RECOMMENDED

2.2. TEAP

TEAP previously used a Protected Access Credential (PAC), which is functionally equivalent to

session tickets provided by TLS 1.3 that contain a pre-shared key (PSK) along with other data. As

such, the use of a PAC is deprecated for TEAP in TLS 1.3. PAC provisioning, as defined in

, is also no longer part of TEAP when TLS 1.3 is used.

 gives a definition for the Inner Method Session Key (IMSK), which depends

on the TLS Pseudorandom Function (PRF) (also known as TLS-PRF). When the j'th inner method

generates an EMSK, we update that definition for TLS 1.3 as:

The secret is the EMSK or MSK from the j'th inner method. When an inner method does not

provide an EMSK or MSK, IMSK[j] is 32 octets of zero.

The other key derivations for TEAP are given here. All derivations not given here are the same as

given above in the previous section. These derivations are also used for EAP-FAST, but using the

EAP-FAST Type.

The derivation of the IMSKs, Inner Method Compound Keys (IMCKs), and Compound Session

Keys (CMKs) is given below.

Note: In these definitions, || denotes concatenation.

In TLS 1.3, the derivation of IMCK[j] uses both a different label and a different order of

concatenating fields than what was used by TEAP with TLS 1.2. Similarly, the session_key_seed in

TLS 1.3 uses the Type as the context. In TLS 1.2, the context was a zero-length field.

The outer MSK and EMSK are then derived from the final ("n"th) inner method, as follows:

[RFC7170], Section 3.8.1

[RFC7170], Section 5.2

IMSK[j] = TLS-Exporter("TEAPbindkey@ietf.org", secret, 32)

session_key_seed = TLS-Exporter("EXPORTER: teap session key seed",
 Type, 40)

S-IMCK[0] = session_key_seed
For j = 1 to n-1 do
 IMCK[j] = TLS-Exporter("EXPORTER: Inner Methods Compound Keys",
 S-IMCK[j-1] || IMSK[j], 60)
 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc7170#section-3.8.1
https://www.rfc-editor.org/rfc/rfc7170#section-5.2

The TEAP Compound Message Authentication Code (MAC) defined in

remains the same, but the MAC for TLS 1.3 is computed with the Hashed Message Authentication

Code (HMAC) algorithm negotiated for the HMAC-based Key Derivation Function (HKDF) in the

key schedule, as per . That is, the MAC used is the MAC derived from the

TLS handshake:

where we define CMK[n] as the CMK taken from the final ("n"th) inner method.

For TLS 1.3, the MAC is computed with the HMAC algorithm negotiated for HKDF in the key

schedule, as per . That is, the MAC used is the MAC derived from the TLS

handshake.

The definition of BUFFER is unchanged from .

MSK = TLS-Exporter(
 "EXPORTER: Session Key Generating Function",
 S-IMCK[n], 64)

EMSK = TLS-Exporter(
 "EXPORTER: Extended Session Key Generating Function",
 S-IMCK[n], 64)

[RFC7170], Section 5.3

[RFC8446], Section 7.1

Compound-MAC = MAC(CMK[n], BUFFER)

[RFC8446], Section 7.1

[RFC7170], Section 5.3

2.2.1. Client Certificates

The use of client certificates is still permitted when using TEAP with TLS 1.3. However, if the

client certificate is accepted, then the EAP peer proceed with additional authentication of

Phase 2, as per . If there is no Phase 2 data, then the EAP server reject

the session.

While permits "authentication of the client via client certificate during

phase 1, with no additional authentication or information exchange required," this practice is

forbidden when TEAP is used with TLS 1.3. If there is a requirement to use client certificates with

no inner tunnel methods, then EAP-TLS should be used instead of TEAP.

 suggests that client certificates should be sent in Phase 2 of the TEAP

exchange "since TLS client certificates are sent in the clear". While TLS 1.3 no longer sends client

certificates in the clear, TEAP implementations need to distinguish identities for both User and

Machine using the Identity-Type TLV (with values 1 and 2, respectively). When a client certificate

is sent outside of the TLS tunnel, it include Identity-Type as an outer TLV in order to signal

the type of identity which that client certificate is for.

MUST

[RFC7170], Section 7.6 MUST

[RFC5281], Section 7.6

[RFC7170], Section 7.4.1

MUST

2.3. EAP-FAST

For EAP-FAST, the session_key_seed is also part of the key_block as defined in

.

[RFC4851], Section

5.1

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7170#section-5.3
https://www.rfc-editor.org/rfc/rfc8446#section-7.1
https://www.rfc-editor.org/rfc/rfc8446#section-7.1
https://www.rfc-editor.org/rfc/rfc7170#section-5.3
https://www.rfc-editor.org/rfc/rfc7170#section-7.6
https://www.rfc-editor.org/rfc/rfc5281#section-7.6
https://www.rfc-editor.org/rfc/rfc7170#section-7.4.1
https://www.rfc-editor.org/rfc/rfc4851#section-5.1
https://www.rfc-editor.org/rfc/rfc4851#section-5.1

The definitions of S-IMCK[n], MSK, and EMSK are the same as given above for TEAP. We reiterate

that the EAP-FAST Type must be used when deriving the session_key_seed and not the TEAP

Type.

Unlike , the definition of IMCK[j] places the reference to S-IMCK after the

textual label and then concatenates the IMSK instead of the MSK.

EAP-FAST previously used a PAC that is functionally equivalent to session tickets provided by TLS

1.3, which contain a PSK along with other data. As such, the use of a PAC is deprecated for EAP-

FAST in TLS 1.3. PAC provisioning is also no longer part of EAP-FAST when TLS 1.3 is

used.

The T-PRF given in is not used for TLS 1.3. Instead, it is replaced with the

TLS 1.3 TLS-Exporter function.

[RFC4851], Section 5.2

[RFC5422]

[RFC4851], Section 5.5

2.3.1. Client Certificates

The use of client certificates is still permitted when using EAP-FAST with TLS 1.3. However, if the

client certificate is accepted, then the EAP peer proceed with additional authentication of

Phase 2, as per . If there is no Phase 2 data, then the EAP server

reject the session.

While implicitly permits the use of client certificates without proceeding to Phase 2,

this practice is forbidden when EAP-FAST is used with TLS 1.3. If there is a requirement to use

client certificates with no inner tunnel methods, then EAP-TLS should be used instead of EAP-

FAST.

MUST

[RFC4851], Section 7.4.1 MUST

[RFC4851]

2.4. EAP-TTLS

 defines an implicit challenge when the inner methods of the Challenge

Handshake Authentication Protocol (CHAP) , Microsoft CHAP (MS-CHAP) , or

MS-CHAPv2 are used. The derivation for TLS 1.3 is instead given as:

There is no "context_value" () passed to the TLS-Exporter function. The

value "n" given here is the length of the data required; requires it to be 17 octets for

CHAP () and MS-CHAPv2 (), and 9 octets for MS-

CHAP ().

When the Password Authentication Protocol (PAP), CHAP, or MS-CHAPv1 are used as inner

authentication methods, there is no opportunity for the EAP server to send a protected success

indication, as is done in . Instead, when TLS session tickets are disabled,

the response from the EAP server be either EAP-Success or EAP-Failure. These responses

are unprotected and can be forged by a skilled attacker.

[RFC5281], Section 11.1

[RFC1994] [RFC2433]

[RFC2759]

EAP-TTLS_challenge = TLS-Exporter("ttls challenge",, n)

[RFC8446], Section 7.5

[RFC5281]

[RFC5281], Section 11.2.2 [RFC5281], Section 11.2.4

[RFC5281], Section 11.2.3

[RFC9190], Section 2.5

MUST

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc4851#section-5.2
https://www.rfc-editor.org/rfc/rfc4851#section-5.5
https://www.rfc-editor.org/rfc/rfc4851#section-7.4.1
https://www.rfc-editor.org/rfc/rfc5281#section-11.1
https://www.rfc-editor.org/rfc/rfc8446#section-7.5
https://www.rfc-editor.org/rfc/rfc5281#section-11.2.2
https://www.rfc-editor.org/rfc/rfc5281#section-11.2.4
https://www.rfc-editor.org/rfc/rfc5281#section-11.2.3
https://www.rfc-editor.org/rfc/rfc9190#section-2.5

Where TLS session tickets are enabled, the response from the EAP server may also continue TLS

negotiation with a TLS NewSessionTicket message. Since this message is protected by TLS, it can

serve as the protected success indication.

Therefore, it is that EAP servers always send a TLS NewSessionTicket message,

even if resumption is not configured. When the EAP peer attempts to use the ticket, the EAP

server can instead request a full authentication. As noted earlier, implementations

send TLS NewSessionTicket messages until the "inner tunnel" authentication has completed in

order to take full advantage of the message as a protected success indication.

When resumption is not used, the TLS NewSessionTicket message is not available and some

authentication methods will not have a protected success indication. While we would like to

always have a protected success indication, limitations of the underlying protocols,

implementations, and deployment requirements make that impossible.

EAP peers continue running their EAP state machine until they receive either an EAP-

Success or an EAP-Failure. Receiving a TLS NewSessionTicket message in response to inner

method PAP, CHAP, or MS-CHAP authentication is normal and be treated as a failure.

RECOMMENDED

SHOULD NOT

MUST

MUST NOT

2.4.1. Client Certificates

 permits "authentication of the client via client certificate during phase 1,

with no additional authentication or information exchange required." This practice is forbidden

when EAP-TTLS is used with TLS 1.3. If there is a requirement to use client certificates with no

inner tunnel methods, then EAP-TLS should be used instead of EAP-TTLS.

The use of client certificates is still permitted when using EAP-TTLS with TLS 1.3. However, if the

client certificate is accepted, then the EAP peer proceed with additional authentication of

Phase 2, as per . If there is no Phase 2 data, then the EAP server reject

the session.

[RFC5281], Section 7.6

MUST

[RFC5281], Section 7.2 MUST

2.5. PEAP

When PEAP uses crypto binding, it uses a different key calculation defined in that

consumes inner EAP method keying material. The PRF+ function used in is not

taken from the TLS exporter but is instead calculated via a different method that is given in

. That derivation remains unchanged in this specification.

Note that the above derivation uses SHA-1, which may be formally deprecated in the near future.

However, the PRF+ calculation uses a PEAP Tunnel Key (TK), which is defined in as:

... the TK is the first 60 octets of the Key_Material, as specified in : TLS-PRF-128

(master secret, "client EAP encryption", client.random || server.random).

[PEAP-MPPE]

[PEAP-MPPE]

[PEAP-PRF]

[PEAP-TK]

[RFC5216]

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc5281#section-7.6
https://www.rfc-editor.org/rfc/rfc5281#section-7.2

We note that the text in does not define Key_Material. Instead, it defines TK as the

first octets of Key_Material and gives a definition of Key_Material that is appropriate for TLS

versions before TLS 1.3.

For TLS 1.3, the TK should be derived from the Key_Material defined here in Section 2.1 instead

of using the TLS-PRF-128 derivation given in . The method defined in

 be used.

[PEAP-PRF]

[PEAP-PRF] [PEAP-TK] MUST

NOT

2.5.1. Client Certificates

As with EAP-TTLS, permits the use of client certificates in addition to inner tunnel

methods. The practice of using client certificates with no "inner method" is forbidden when PEAP

is used with TLS 1.3. If there is a requirement to use client certificates with no inner tunnel

methods, then EAP-TLS should be used instead of PEAP.

The use of client certificates is still permitted when using PEAP with TLS 1.3. However, if the

client certificate is accepted, then the EAP peer proceed with additional authentication of

the inner tunnel. If there is no inner tunnel authentication data, then the EAP server reject

the session.

[PEAP]

MUST

MUST

3. Application Data

Unlike previous TLS versions, TLS 1.3 can continue negotiation after the initial TLS handshake

has been completed; TLS 1.3 calls this the "CONNECTED" state. Some implementations use receipt

of a Finished message as an indication that TLS negotiation has completed and that an "inner

tunnel" session can now be negotiated. This assumption is not always correct with TLS 1.3.

Earlier TLS versions did not send application data along with the Finished message. It was then

possible for implementations to assume that a receipt of a Finished message also meant that

there was no application data available and that another round trip was required.

This assumption is not true with TLS 1.3, and applications relying on that behavior will not

operate correctly with TLS 1.3.

As a result, implementations check for application data once the TLS session has been

established. This check be performed before proceeding with another round trip of TLS

negotiation. TLS- based EAP methods, such as EAP-TTLS, PEAP, and EAP-FAST, each have method-

specific application data that be processed according to the EAP Type.

TLS 1.3 in also permits NewSessionTicket messages to be sent after the

server has received the client Finished message, which is a change from earlier TLS versions.

This change can cause implementations to fail in a number of different ways due to a reliance on

implicit behavior seen in earlier TLS versions.

In order to correct this failure, we require that implementations send or expect to

receive application data in the TLS session if the underlying TLS connection is still performing

negotiation. Implementations delay processing of application data until such time as the

MUST

MUST

MUST

[RFC8446], Section 4.6.1

MUST NOT

MUST

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8446#section-4.6.1

TLS negotiation has finished. If the TLS negotiation is successful, then the application data can be

examined. If the TLS negotiation is unsuccessful, then the application data is untrusted;

therefore, it be discarded without being examined.

The default for many TLS library implementations is to send a NewSessionTicket message

immediately after or along with the Finished message. This ticket could be used for resumption,

even if the "inner tunnel" authentication has not been completed. If the ticket could be used, then

it could allow a malicious EAP peer to completely bypass the "inner tunnel" authentication.

Therefore, the EAP server permit any session ticket to successfully resume

authentication unless the inner tunnel authentication has completed successfully. The alternative

would allow an attacker to bypass authentication by obtaining a session ticket, immediately

closing the current session, and "resuming" using the session ticket.

To protect against that attack, implementations send NewSessionTicket messages

until the "inner tunnel" authentication has completed. There is no reason to send session tickets

that will later be invalidated or ignored. However, we recognize that this suggestion may not

always be possible to implement with some available TLS libraries. As such, EAP servers

take care to either invalidate or discard session tickets that are associated with sessions that

terminate in EAP Failure.

The NewSessionTicket message also be sent along with other application data, if

possible. Sending that message alone prolongs the packet exchange to no benefit. In addition to

prolonging the packet exchange, using a separate NewSessionTicket message can lead to non-

interoperable implementations.

 requires a protected result indication, which indicates that TLS negotiation

has finished. Methods that use "inner tunnel" methods instead begin their "inner tunnel"

negotiation by sending Type-specific application data.

MUST

MUST NOT

SHOULD NOT

MUST

SHOULD

[RFC9190], Section 2.5

MUST

3.1. Identities

For EAP-TLS, Sections 2.1.3 and 2.1.7 of recommend the use of anonymous Network

Access Identifiers (NAIs) in the EAP Response/Identity packet. However, as EAP-TLS

does not send application data inside of the TLS tunnel, that specification does not address the

subject of "inner" identities in tunneled EAP methods. However, this subject must be addressed

for the tunneled methods.

Using an anonymous NAI for the outer identity as per has a few benefits.

An NAI allows the EAP session to be routed in a AAA framework as described in

. Using an anonymous realm also ensures that user identifiers are kept private.

As for the inner identity, we define it generically as the identification information carried inside

of the TLS tunnel. For PEAP, that identity may be an EAP Response/Identity. For EAP-TTLS, it may

be the User-Name attribute. Vendor-specific EAP methods that use TLS will generally also have

an inner identity. This identity is carried inside of the TLS tunnel and is therefore both routed to

the correct destination by the outer identity and kept private by the use of TLS.

[RFC9190]

[RFC7542]

[RFC7542], Section 2.4

[RFC7542],

Section 3

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc9190#section-2.5
https://www.rfc-editor.org/rfc/rfc9190#section-2.1.3
https://www.rfc-editor.org/rfc/rfc9190#section-2.1.7
https://www.rfc-editor.org/rfc/rfc7542#section-2.4
https://www.rfc-editor.org/rfc/rfc7542#section-3

In other words, we can view the outer TLS layer of tunneled EAP methods as a secure transport

layer that is responsible for getting the actual (inner) authentication credentials securely from

the EAP peer to the EAP server. The EAP server then uses the inner identity and inner

authentication data to identify and authenticate a particular user.

As the authentication data is routed to the correct destination, there is little reason for the inner

identity to also contain a realm. Therefore, we have a few recommendations on the inner and

outer identities, along with their relationship to each other.

The outer identity use an anonymous NAI realm that allows for both user privacy and

for the EAP session to be routed in a AAA framework as described in . Where

NAI realms are not used, packets will not be routable outside of the local organization.

The inner identity use an anonymous NAI realm. If anonymous network access is

desired, EAP peers use EAP-TLS without peer authentication, as per

. EAP servers cause authentication to fail if an EAP peer uses an anonymous "inner"

identity for any TLS-based EAP method.

Implementations use inner identities that contain an NAI realm. Many

organizations typically use only one realm for all user accounts.

However, there are situations where it is useful for an inner identity to contain a realm. For

example, an organization may have multiple independent sub-organizations, each with a

different and unique realm. These realms may be independent of one another, or the realms may

be a subdomain (or subdomains) of the public outer realm.

In that case, an organization can configure one public "routing" realm and multiple separate

"inner" realms. This separation of realms also allows an organization to split users into logical

groups by realm, where the "user" portion of the NAI may otherwise conflict. For example,

"user@example.com" and "user@example.org" are different NAIs that can both be used as inner

identities.

Using only one public realm both keeps internal information private and simplifies realm

management for external entities by minimizing the number of realms that have to be tracked

by them.

In most situations, routing identifiers should be associated with the authentication data that they

are routing. For example, if a user has an inner identity of "user@example.com", then it generally

makes little sense to have an outer identity of "@example.org". The authentication request would

then be routed to the "example.org" domain, which may have no idea what to do with the

credentials for "user@example.com". At best, the authentication request would be discarded. At

worst, the "example.org" domain could harvest user credentials for later use in attacks on

"example.com".

When an EAP server receives an inner identity for a realm which it is not authoritative, it

reject the authentication. There is no reason for one organization to authenticate users from a

different (and independent) organization.

SHOULD

[RFC7542], Section 3

MUST NOT

MUST [RFC9190], Section

2.1.5 MUST

SHOULD NOT

MUST

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc7542#section-3
https://www.rfc-editor.org/rfc/rfc9190#section-2.1.5
https://www.rfc-editor.org/rfc/rfc9190#section-2.1.5

In addition, associating inner/outer identities from different organizations in the same EAP

authentication session means that otherwise unrelated realms are tied together, which can make

networks more fragile.

For example, an organization that uses a "hosted" AAA provider may choose to use the realm of

the AAA provider as the outer identity for user authentication. The inner identity can then be

fully qualified: username plus realm of the organization. This practice may result in successful

authentications, but it has practical difficulties.

Additionally, an organization may host their own AAA servers but use a "cloud" identity provider

to hold user accounts. In that situation, the organizations could try to use their own realm as the

outer (routing) identity and then use an identity from the "cloud" provider as the inner identity.

This practice is . User accounts for an organization should be qualified as

belonging to that organization and not to an unrelated third party. There is no reason to tie the

configuration of user systems to public realm routing; that configuration more properly belongs

in the network.

Both of these practices mean that changing "cloud" providers is difficult. When such a change

happens, each individual EAP peer must be updated with a different outer identity that points to

the new "cloud" provider. This process can be expensive, and some EAP peers may not be online

when this changeover happens. The result could be devices or users who are unable to obtain

network access, even if all relevant network systems are online and functional.

Further, standards such as allow for dynamic discovery of home servers for

authentication. This specification has been widely deployed and means that there is minimal cost

to routing authentication to a particular domain. The authentication can also be routed to a

particular identity provider and changed at will with no loss of functionality. That specification is

also scalable since it does not require changes to many systems when a domain updates its

configuration. Instead, only one thing has to change: the configuration of that domain.

Everything else is discovered dynamically.

That is, changing the configuration for one domain is significantly simpler and more scalable

than changing the configuration for potentially millions of end-user devices.

We recognize that there may be existing use cases where the inner and outer identities use

different realms. As such, we cannot forbid that practice. We hope that the discussion above

shows not only why such practices are problematic, but how alternative methods are more

flexible, more scalable, and are easier to manage.

NOT RECOMMENDED

[RFC7585]

4. Resumption

 defines the process for resumption. This process is the same for all TLS-

based EAP Types. The only practical difference is that the value of the Type field is different. The

requirements on identities, use of TLS cipher suites, resumption, etc. remain unchanged from

that document.

[RFC9190], Section 2.1.3

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9190#section-2.1.3

Note that if resumption is performed, then the EAP server send the protected success result

indication (one octet of 0x00) inside the TLS tunnel, as per . The EAP peer in turn

check for the existence of the protected success result indication (one octet of 0x00) and cause

authentication to fail if that octet is not received. If either the peer or the server initiates an inner

tunnel method instead, then that method be followed, and inner authentication

be skipped.

All TLS-based EAP methods support resumption, as it is a property of the underlying TLS

protocol. All EAP servers and peers support resumption for all TLS-based EAP methods. We

note that EAP servers and peers can still choose to not resume any particular session. For

example, EAP servers may forbid resumption for administrative or other policy reasons.

It is that EAP servers and peers enable resumption and use it where possible.

The use of resumption decreases the number of round trips used for authentication. This

decrease leads to lower latency for authentications and less load on the EAP server. Resumption

can also lower load on external systems, such as databases that contain user credentials.

As the packet flows for resumption are essentially identical across all TLS-based EAP Types, it is

technically possible to authenticate using EAP-TLS (Type 13) and then perform resumption using

another EAP Type, such as with EAP-TTLS (Type 21). However, there is no practical benefit to

doing so. It is also not clear what this behavior would mean or what (if any) security issues there

may be with it. As a result, this behavior is forbidden.

EAP servers therefore resume sessions across different EAP Types, and EAP servers

 reject resumptions in which the EAP Type value is different from the original

authentication.

MUST

[RFC9190] MUST

MUST MUST NOT

MUST

RECOMMENDED

MUST NOT

MUST

5. Security Considerations

 is included here by reference.

Updating the above EAP methods to use TLS 1.3 is of high importance for the Internet

community. Using the most recent security protocols can significantly improve security and

privacy of a network.

For PEAP, some derivations use HMAC-SHA1 . In the interests of interoperability

and minimal changes, we do not change that derivation, as there are no known security issues

with HMAC- SHA1. Further, the data derived from the HMAC-SHA1 calculations is exchanged

inside of the TLS tunnel and is visible only to users who have already successfully authenticated.

As such, the security risks are minimal.

[RFC9190], Section 5

[PEAP-MPPE]

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc9190#section-5

5.1. Handling of TLS NewSessionTicket Messages

In some cases, client certificates are not used for TLS-based EAP methods. In those cases, the user

is authenticated only after successful completion of the inner tunnel authentication. However,

 states that "at any time after the server has received the client Finished

message, it send a NewSessionTicket message." This message is sent by the server before the

inner authentication method has been run and therefore before the user has been authenticated.

This separation of data allows for a "time of use, time of check" security issue. Malicious clients

can begin a session and receive a NewSessionTicket message. The malicious client can then abort

the authentication session and use the obtained NewSessionTicket to "resume" the previous

session. If the server allows the session to resume without verifying that the user had first been

authenticated, the malicious client can then obtain network access without ever being

authenticated.

As a result, EAP servers assume that a user has been authenticated simply because a

TLS session is being resumed. Even if a session is being resumed, an EAP server have

policies that still force the inner authentication methods to be run. For example, the user's

password may have expired in the time interval between first authentication and session

resumption.

Therefore, the guidelines given here describe situations where an EAP server is permitted to

allow session resumption rather than where an EAP server is required to allow session

resumption. An EAP server could simply refuse to issue session tickets or could run the full inner

authentication, even if a session was resumed.

Where session tickets are used, the EAP server track the successful completion of an

inner authentication and associate that status with any session tickets issued for that session.

This requirement can be met in a number of different ways.

One way is for the EAP server to simply not send any TLS NewSessionTicket messages until the

inner authentication has completed successfully. The EAP server then knows that the existence of

a session ticket is proof that a user was authenticated, and the session can be resumed.

Another way is for the EAP server to simply discard or invalidate any session tickets until after

the inner authentication has completed successfully. When the user is authenticated, a new TLS

NewSessionTicket message can be sent to the client, and the new ticket can be cached and/or

validated.

Another way is for the EAP server to associate the inner authentication status with each session

ticket. When a session ticket is used, the authentication status is checked. When a session ticket

shows that the inner authentication did not succeed, the EAP server run the inner

authentication method(s) in the resumed tunnel and only grant access based on the success or

failure of those inner methods.

[RFC8446], Section 4.6.1

MAY

MUST NOT

MAY

SHOULD

MUST

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc8446#section-4.6.1

However, the interaction between EAP implementations and any underlying TLS library may be

complex, and the EAP server may not be able to make the above guarantees. Where the EAP

server is unable to determine the user's authentication status from the session ticket, it

assume that inner authentication has not completed, and it run the inner authentication

method(s) successfully in the resumed tunnel before granting access.

This issue is not relevant for EAP-TLS, which only uses client certificates for authentication in the

TLS handshake. It is only relevant for TLS-based EAP methods that do not use the TLS layer to

authenticate.

MUST

MUST

5.2. Protected Success and Failure Indications

 provides for protected success and failure indications as discussed in

. These result indications are provided for both full authentication and resumption.

Other TLS-based EAP methods provide these result indications only for resumption.

For full authentication, the other TLS-based EAP methods do not provide for protected success

and failure indications as part of the outer TLS exchange. That is, the protected result indication

is not used, and there is no TLS-layer alert sent when the inner authentication fails. Instead,

there is simply either an EAP-Success or an EAP-Failure sent. This behavior is the same as for

previous TLS versions; therefore, it introduces no new security issues.

We note that most TLS-based EAP methods provide for success and failure indications as part of

the authentication exchange performed inside of the TLS tunnel. These result indications are

therefore protected, as they cannot be modified or forged.

However, some inner methods do not provide for success or failure indications. For example, the

use of EAP-TTLS with inner PAP, CHAP, or MS-CHAP. Those methods send authentication

credentials to the EAP server via the inner tunnel with no method to signal success or failure

inside of the tunnel.

There are functionally equivalent authentication methods that can be used to provide protected

result indications. PAP can often be replaced with EAP-Generic Token Card (EAP-GTC), CHAP with

EAP-MD5, and MS-CHAPv1 with MS-CHAPv2 or EAP-MSCHAPv2. All of the replacement methods

provide for similar functionality and have protected success and failure indication. The main

cost to this change is additional round trips.

It is that implementations deprecate inner tunnel methods that do not provide

protected success and failure indications when TLS session tickets cannot be used.

Implementations use EAP- GTC instead of PAP and EAP-MD5 instead of CHAP.

Implementations use MS-CHAPv2 or EAP-MSCHAPv2 instead of MS-CHAPv1. New TLS-

based EAP methods provide protected success and failure indications inside of the TLS

tunnel.

[RFC9190] [RFC4137],

Section 4.1.1

RECOMMENDED

SHOULD

SHOULD

MUST

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc4137#section-4.1.1

[IANA]

7. References

7.1. Normative References

, , .

When the inner authentication protocol indicates that authentication has failed, then

implementations fail authentication for the entire session. There may be additional

protocol exchanges in order to exchange more detailed failure indications, but the final result

 be a failed authentication. As noted earlier, any session tickets for this failed

authentication be either invalidated or discarded.

Similarly, when the inner authentication protocol indicates that authentication has succeeded,

implementations cause authentication to succeed for the entire session. There be

additional protocol exchanges that could still cause failure, so we cannot mandate sending

success on successful authentication.

In both of these cases, the EAP server send an EAP-Failure or EAP-Success message, as

indicated by Step 4 in . Even though both parties have already determined

the final authentication status, the full EAP state machine must still be followed.

MUST

MUST

MUST

SHOULD MAY

MUST

Section 2 of [RFC3748]

6. IANA Considerations

This section provides guidance to the Internet Assigned Numbers Authority (IANA) regarding the

registration of values related to the TLS-based EAP methods for the TLS 1.3 protocol in

accordance with .

IANA has added the following labels to the "TLS Exporter Label" registry defined by .

These labels are used in the derivation of Key_Material and Method-Id as defined above in

Section 2, and they are used only for TEAP.

[RFC8126]

[RFC5705]

Value DTLS-

OK

Recommended Reference

EXPORTER: teap session key seed N Y RFC 9427

EXPORTER: Inner Methods Compound Keys N Y RFC 9427

EXPORTER: Session Key Generating Function N Y RFC 9427

EXPORTER: Extended Session Key Generating

Function

N Y RFC 9427

TEAPbindkey@ietf.org N Y RFC 9427

Table 1: TLS Exporter Labels Registry

IANA "Method Types" <https://www.iana.org/assignments/eap-numbers/>

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc3748#section-2
https://www.iana.org/assignments/eap-numbers/

[RFC2119]

[RFC3748]

[RFC5216]

[RFC5705]

[RFC7170]

[RFC8126]

[RFC8174]

[RFC8446]

[RFC9190]

[MSPEAP]

[PEAP]

[PEAP-MPPE]

, , ,

, , March 1997,

.

, , , , and ,

, , , June 2004,

.

, , and , ,

, , March 2008,

.

, ,

, , March 2010,

.

, , , and ,

, , ,

May 2014, .

, , and ,

, , , , June

2017, .

, ,

, , , May 2017,

.

, , ,

, August 2018, .

 and ,

, , ,

February 2022, .

7.2. Informative References

,

, , June 2021,

.

, , , , , and ,

, ,

, 15 October 2004,

.

, , , October 2020,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Aboba, B. Blunk, L. Vollbrecht, J. Carlson, J. H. Levkowetz, Ed. "Extensible

Authentication Protocol (EAP)" RFC 3748 DOI 10.17487/RFC3748

<https://www.rfc-editor.org/info/rfc3748>

Simon, D. Aboba, B. R. Hurst "The EAP-TLS Authentication Protocol" RFC

5216 DOI 10.17487/RFC5216 <https://www.rfc-editor.org/info/

rfc5216>

Rescorla, E. "Keying Material Exporters for Transport Layer Security (TLS)" RFC

5705 DOI 10.17487/RFC5705 <https://www.rfc-editor.org/info/

rfc5705>

Zhou, H. Cam-Winget, N. Salowey, J. S. Hanna "Tunnel Extensible

Authentication Protocol (TEAP) Version 1" RFC 7170 DOI 10.17487/RFC7170

<https://www.rfc-editor.org/info/rfc7170>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Preuß Mattsson, J. M. Sethi "EAP-TLS 1.3: Using the Extensible

Authentication Protocol with TLS 1.3" RFC 9190 DOI 10.17487/RFC9190

<https://www.rfc-editor.org/info/rfc9190>

Microsoft Corporation "[MS-PEAP]: Protected Extensible Authentication

Protocol (PEAP)" Protocol Revision 31.0 <https://

msdn.microsoft.com/en-us/library/cc238354.aspx>

Palekar, A. Josefsson, S. Simon, D. Zorn, G. Salowey, J. H. Zhou "Protected

EAP Protocol (PEAP) Version 2" Work in Progress Internet-Draft, draft-

josefsson-pppext-eap-tls-eap-10 <https://datatracker.ietf.org/

doc/html/draft-josefsson-pppext-eap-tls-eap-10>

Microsoft Corporation "Key Management" Section 3.1.5.7

<https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-peap/

e75b0385-915a-4fc3-a549-fd3d06b995b0>

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 17

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3748
https://www.rfc-editor.org/info/rfc5216
https://www.rfc-editor.org/info/rfc5216
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc7170
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9190
https://msdn.microsoft.com/en-us/library/cc238354.aspx
https://msdn.microsoft.com/en-us/library/cc238354.aspx
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-10
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-10
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-peap/e75b0385-915a-4fc3-a549-fd3d06b995b0
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-peap/e75b0385-915a-4fc3-a549-fd3d06b995b0

[PEAP-PRF]

[PEAP-TK]

[RFC1994]

[RFC2433]

[RFC2759]

[RFC4137]

[RFC4851]

[RFC5281]

[RFC5422]

[RFC7542]

[RFC7585]

,

, , February 2019,

.

, , , April 2021,

.

, ,

, , August 1996,

.

 and , , ,

, October 1998, .

, , ,

, January 2000, .

, , , and ,

, ,

, August 2005, .

, , , and ,

, , , May 2007,

.

 and ,

,

, , August 2008,

.

, , , and ,

, , , March 2009,

.

, , , ,

May 2015, .

 and ,

, ,

, October 2015, .

Microsoft Corporation "Intermediate PEAP MAC Key (IPMK) and Compound

MAC Key (CMK)" Section 3.1.5.5.2.2 <https://docs.microsoft.com/

en-us/openspecs/windows_protocols/MS-PEAP/

0de54161-0bd3-424a-9b1a-854b4040a6df>

Microsoft Corporation "PEAP Tunnel Key (TK)" Section 3.1.5.5.2.1

<https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/

41288c09-3d7d-482f-a57f-e83691d4d246>

Simpson, W. "PPP Challenge Handshake Authentication Protocol (CHAP)" RFC

1994 DOI 10.17487/RFC1994 <https://www.rfc-editor.org/info/

rfc1994>

Zorn, G. S. Cobb "Microsoft PPP CHAP Extensions" RFC 2433 DOI 10.17487/

RFC2433 <https://www.rfc-editor.org/info/rfc2433>

Zorn, G. "Microsoft PPP CHAP Extensions, Version 2" RFC 2759 DOI 10.17487/

RFC2759 <https://www.rfc-editor.org/info/rfc2759>

Vollbrecht, J. Eronen, P. Petroni, N. Y. Ohba "State Machines for Extensible

Authentication Protocol (EAP) Peer and Authenticator" RFC 4137 DOI 10.17487/

RFC4137 <https://www.rfc-editor.org/info/rfc4137>

Cam-Winget, N. McGrew, D. Salowey, J. H. Zhou "The Flexible

Authentication via Secure Tunneling Extensible Authentication Protocol Method

(EAP-FAST)" RFC 4851 DOI 10.17487/RFC4851 <https://www.rfc-

editor.org/info/rfc4851>

Funk, P. S. Blake-Wilson "Extensible Authentication Protocol Tunneled

Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0)" RFC

5281 DOI 10.17487/RFC5281 <https://www.rfc-editor.org/info/

rfc5281>

Cam-Winget, N. McGrew, D. Salowey, J. H. Zhou "Dynamic Provisioning

Using Flexible Authentication via Secure Tunneling Extensible Authentication

Protocol (EAP-FAST)" RFC 5422 DOI 10.17487/RFC5422 <https://

www.rfc-editor.org/info/rfc5422>

DeKok, A. "The Network Access Identifier" RFC 7542 DOI 10.17487/RFC7542

<https://www.rfc-editor.org/info/rfc7542>

Winter, S. M. McCauley "Dynamic Peer Discovery for RADIUS/TLS and

RADIUS/DTLS Based on the Network Access Identifier (NAI)" RFC 7585 DOI

10.17487/RFC7585 <https://www.rfc-editor.org/info/rfc7585>

Acknowledgments

Thanks to for a detailed review of the requirements for various EAP Types.Jorge Vergara

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 18

https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/41288c09-3d7d-482f-a57f-e83691d4d246
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/41288c09-3d7d-482f-a57f-e83691d4d246
https://www.rfc-editor.org/info/rfc1994
https://www.rfc-editor.org/info/rfc1994
https://www.rfc-editor.org/info/rfc2433
https://www.rfc-editor.org/info/rfc2759
https://www.rfc-editor.org/info/rfc4137
https://www.rfc-editor.org/info/rfc4851
https://www.rfc-editor.org/info/rfc4851
https://www.rfc-editor.org/info/rfc5281
https://www.rfc-editor.org/info/rfc5281
https://www.rfc-editor.org/info/rfc5422
https://www.rfc-editor.org/info/rfc5422
https://www.rfc-editor.org/info/rfc7542
https://www.rfc-editor.org/info/rfc7585

Thanks to , , , , and

 for reviews of this document and for assistance with interoperability testing.

Jorge Vergara Bruno Periera Vidal Alexander Clouter Karri Huhtanen Heikki

Vatiainen

Author's Address

Alan DeKok

The FreeRADIUS Server Project

 aland@freeradius.org Email:

RFC 9427 TLS-Based EAP Types for Use with TLS 1.3 June 2023

DeKok Standards Track Page 19

mailto:aland@freeradius.org

	RFC 9427
	TLS-Based Extensible Authentication Protocol (EAP) Types for Use with TLS 1.3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Using TLS-Based EAP Methods with TLS 1.3
	2.1. Key Derivation
	2.2. TEAP
	2.2.1. Client Certificates

	2.3. EAP-FAST
	2.3.1. Client Certificates

	2.4. EAP-TTLS
	2.4.1. Client Certificates

	2.5. PEAP
	2.5.1. Client Certificates

	3. Application Data
	3.1. Identities

	4. Resumption
	5. Security Considerations
	5.1. Handling of TLS NewSessionTicket Messages
	5.2. Protected Success and Failure Indications

	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Author's Address

