Stream: Internet Engineering Task Force (IETF)

RFC: 9369
Category: Standards Track
Published: May 2023
ISSN: 2070-1721
Author: M. Duke

Google LLC

RFC 9369
QUIC Version 2

Abstract

This document specifies QUIC version 2, which is identical to QUIC version 1 except for some
trivial details. Its purpose is to combat various ossification vectors and exercise the version
negotiation framework. It also serves as a template for the minimum changes in any future
version of QUIC.

Note that "version 2" is an informal name for this proposal that indicates it is the second version
of QUIC to be published as a Standards Track document. The protocol specified here uses a
version number other than 2 in the wire image, in order to minimize ossification risks.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9369.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Duke Standards Track Page 1


https://www.rfc-editor.org/rfc/rfc9369
https://www.rfc-editor.org/info/rfc9369
https://trustee.ietf.org/license-info

RFC 9369 QUICv2 May 2023

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
2. Conventions
3. Differences with QUIC Version 1
3.1. Version Field
3.2. Long Header Packet Types
3.3. Cryptography Changes
3.3.1. Initial Salt
3.3.2. HMAC-based Key Derivation Function (HKDF) Labels
3.3.3. Retry Integrity Tag
4. Version Negotiation Considerations
4.1. Compatible Negotiation Requirements
. TLS Resumption and NEW_TOKEN Tokens
. Ossification Considerations
. Applicability

. Security Considerations

© o 3 o U

. IANA Considerations
10. References
10.1. Normative References
10.2. Informative References
Appendix A. Sample Packet Protection
A.l. Keys
A.2. Client Initial
A.3. Server Initial
A.4. Retry
A.5. ChaCha20-Poly1305 Short Header Packet

Acknowledgments

Duke Standards Track Page 2



RFC 9369 QUICv2 May 2023

Author's Address

1. Introduction

QUIC version 1 [QUIC] has numerous extension points, including the version number that
occupies the second through fifth bytes of every long header (see [QUIC-INVARIANTS]). If
experimental versions are rare, and QUIC version 1 constitutes the vast majority of QUIC traffic,
there is the potential for middleboxes to ossify on the version bytes that are usually 0x00000001.

In QUIC version 1, Initial packets are encrypted with the version-specific salt, as described in
Section 5.2 of [QUIC-TLS]. Protecting Initial packets in this way allows observers to inspect their
contents, which includes the TLS Client Hello or Server Hello messages. Again, there is the
potential for middleboxes to ossify on the version 1 key derivation and packet formats.

Finally, [QUIC-VN] describes two mechanisms endpoints can use to negotiate which QUIC version
to select. The "incompatible" version negotiation method can support switching from any QUIC
version to any other version with full generality, at the cost of an additional round trip at the
start of the connection. "Compatible" version negotiation eliminates the round-trip penalty but
levies some restrictions on how much the two versions can differ semantically.

QUIC version 2 is meant to mitigate ossification concerns and exercise the version negotiation
mechanisms. The changes provide an example of the minimum set of changes necessary to
specify a new QUIC version. However, note that the choice of the version number on the wire is
randomly chosen instead of "2", and the two bits that identify each Long Header packet type are
different from version 1; both of these properties are meant to combat ossification and are not
strictly required of a new QUIC version.

Any endpoint that supports two versions needs to implement version negotiation to protect
against downgrade attacks.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. Differences with QUIC Version 1

Except for a few differences, QUIC version 2 endpoints MUST implement the QUIC version 1
specification as described in [QUIC], [QUIC-TLS], and [QUIC-RECOVERY]. The remainder of this
section lists the differences.

Duke Standards Track Page 3


https://www.rfc-editor.org/rfc/rfc9001#section-5.2

RFC 9369 QUICv2 May 2023

3.1. Version Field

The Version field of long headers is 0x6b3343cf. This was generated by taking the first four bytes
of the sha256sum of "QUICv2 version number".

3.2. Long Header Packet Types
All version 2 Long Header packet types are different. The Type field values are:

e Initial: 0b01
* 0-RTT: 0b10
* Handshake: 0b11
* Retry: 0b00

3.3. Cryptography Changes

3.3.1. Initial Salt
The salt used to derive Initial keys in Section 5.2 of [QUIC-TLS] changes to:

initial_salt = OxP@dede3def700a6db819381be6e269dcbf9bd2ed9

This is the first 20 bytes of the sha256sum of "QUICv2 salt".

3.3.2. HMAC-based Key Derivation Function (HKDF) Labels

The labels used in [QUIC-TLS] to derive packet protection keys (Section 5.1), header protection
keys (Section 5.4), Retry Integrity Tag keys (Section 5.8), and key updates (Section 6.1) change
from "quic key" to "quicv2 key", from "quic iv" to "quicv2 iv", from "quic hp" to "quicv2 hp", and
from "quic ku" to "quicv2 ku" to meet the guidance for new versions in Section 9.6 of that
document.

3.3.3. Retry Integrity Tag
The key and nonce used for the Retry Integrity Tag (Section 5.8 of [QUIC-TLS]) change to:

secret =
Oxc4dd2484d681aefadff4d69c2¢c20299984a765a5d3¢c31982F38fc74162155e9f

key = 0x8fb4bB1b56ac48e260fbcbcead7ccc92

nonce = 0xd86969bc2d7c6d9990efb0O4a

The secret is the sha256sum of "QUICv2 retry secret". The key and nonce are derived from this
secret with the labels "quicv2 key" and "quicv2 iv", respectively.

Duke Standards Track Page 4


https://www.rfc-editor.org/rfc/rfc9001#section-5.2
https://www.rfc-editor.org/rfc/rfc9001#section-5.1
https://www.rfc-editor.org/rfc/rfc9001#section-5.4
https://www.rfc-editor.org/rfc/rfc9001#section-5.8
https://www.rfc-editor.org/rfc/rfc9001#section-6.1
https://www.rfc-editor.org/rfc/rfc9001#section-9.6
https://www.rfc-editor.org/rfc/rfc9001#section-5.8

RFC 9369 QUICv2 May 2023

4. Version Negotiation Considerations

QUIC version 2 is not intended to deprecate version 1. Endpoints that support version 2 might
continue support for version 1 to maximize compatibility with other endpoints. In particular,
HTTP clients often use Alt-Svc [RFC7838] to discover QUIC support. As this mechanism does not
currently distinguish between QUIC versions, HTTP servers SHOULD support multiple versions to
reduce the probability of incompatibility and the cost associated with QUIC version negotiation
or TCP fallback. For example, an origin advertising support for "h3" in Alt-Svc should support
QUIC version 1, as it was the original QUIC version used by HTTP/3; therefore, some clients will
only support that version.

Any QUIC endpoint that supports QUIC version 2 MUST send, process, and validate the
version_information transport parameter specified in [QUIC-VN] to prevent version downgrade
attacks.

Note that version 2 meets the definition in [QUIC-VN] of a compatible version with version 1, and
version 1 is compatible with version 2. Therefore, servers can use compatible negotiation to
switch a connection between the two versions. Endpoints that support both versions SHOULD
support compatible version negotiation to avoid a round trip.

4.1. Compatible Negotiation Requirements

Compatible version negotiation between versions 1 and 2 follows the same requirements in
either direction. This section uses the terms "original version" and "negotiated version" from
[QUIC-VN].

If the server sends a Retry packet, it MUST use the original version. The client ignores Retry
packets using other versions. The client MUST NOT use a different version in the subsequent
Initial packet that contains the Retry token. The server MAY encode the QUIC version in its Retry
token to validate that the client did not switch versions, and drop the packet if it switched, to
enforce client compliance.

QUIC version 2 uses the same transport parameters to authenticate the Retry as QUIC version 1.
After switching to a negotiated version after a Retry, the server MUST include the relevant
transport parameters to validate that the server sent the Retry and the connection IDs used in the
exchange, as described in Section 7.3 of [QUIC].

The server cannot send CRYPTO frames until it has processed the client's transport parameters.
The server MUST send all CRYPTO frames using the negotiated version.

The client learns the negotiated version by observing the first long header Version field that
differs from the original version. If the client receives a CRYPTO frame from the server in the
original version, it indicates that the negotiated version is equal to the original version.

Before the server is able to process transport parameters from the client, it might need to
respond to Initial packets from the client. For these packets, the server uses the original version.

Duke Standards Track Page 5


https://www.rfc-editor.org/rfc/rfc9000#section-7.3

RFC 9369 QUICv2 May 2023

Once the client has learned the negotiated version, it SHOULD send subsequent Initial packets
using that version. The server MUST NOT discard its original version Initial receive keys until it
successfully processes a Handshake packet with the negotiated version.

Both endpoints MUST send Handshake and 1-RTT packets using the negotiated version. An
endpoint MUST drop packets using any other version. Endpoints have no need to generate the
keying material that would allow them to decrypt or authenticate such packets.

The client MUST NOT send 0-RTT packets using the negotiated version, even after processing a
packet of that version from the server. Servers can accept 0-RTT and then process 0-RTT packets
from the original version.

5. TLS Resumption and NEW_TOKEN Tokens

TLS session tickets and NEW_TOKEN tokens are specific to the QUIC version of the connection
that provided them. Clients MUST NOT use a session ticket or token from a QUIC version 1
connection to initiate a QUIC version 2 connection, and vice versa. When a connection includes
compatible version negotiation, any issued server tokens are considered to originate from the
negotiated version, not the original one.

Servers MUST validate the originating version of any session ticket or token and not accept one
issued from a different version. A rejected ticket results in falling back to a full TLS handshake,
without 0-RTT. A rejected token results in the client address remaining unverified, which limits
the amount of data the server can send.

After compatible version negotiation, any resulting session ticket maps to the negotiated version
rather than the original one.

6. Ossification Considerations

QUIC version 2 provides protection against some forms of ossification. Devices that assume that
all long headers will encode version 1, or that the version 1 Initial key derivation formula will
remain version-invariant, will not correctly process version 2 packets.

However, many middleboxes, such as firewalls, focus on the first packet in a connection, which
will often remain in the version 1 format due to the considerations above.

Clients interested in combating middlebox ossification can initiate a connection using version 2 if
they are reasonably certain the server supports it and if they are willing to suffer a round-trip
penalty if they are incorrect. In particular, a server that issues a session ticket for version 2
indicates an intent to maintain version 2 support while the ticket remains valid, even if support
cannot be guaranteed.

Duke Standards Track Page 6



RFC 9369 QUICv2 May 2023

7. Applicability

QUIC version 2 provides no change from QUIC version 1 for the capabilities available to
applications. Therefore, all Application-Layer Protocol Negotiation (ALPN) [RFC7301] codepoints
specified to operate over QUIC version 1 can also operate over this version of QUIC. In particular,
both the "h3" [HTTP/3] and "doq" [RFC9250] ALPNSs can operate over QUIC version 2.

Unless otherwise stated, all QUIC extensions defined to work with version 1 also work with
version 2.

8. Security Considerations

QUIC version 2 introduces no changes to the security or privacy properties of QUIC version 1.

The mandatory version negotiation mechanism guards against downgrade attacks, but
downgrades have no security implications, as the version properties are identical.

Support for QUIC version 2 can help an observer to fingerprint both client and server devices.

9. TANA Considerations

IANA has added the following entries to the "QUIC Versions" registry maintained at <https://
www.iana.org/assignments/quic>.

Value: 0x6b3343cf
Status: permanent
Specification: RFC 9369
Change Controller: IETF
Contact: QUIC WG

Value: 0x709a50c4

Status: provisional
Specification: RFC 9369
Change Controller: IETF
Contact: QUIC WG

Notes: QUIC v2 draft codepoint

10. References

10.1. Normative References

[QuIC]

Duke Standards Track Page 7


https://www.iana.org/assignments/quic
https://www.iana.org/assignments/quic

RFC 9369 QUICv2 May 2023

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and
Secure Transport", RFC 9000, DOI 10.17487/RFC9000, May 2021, <https://
www.rfc-editor.org/info/rfc9000>.

[QUIC-RECOVERY] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection and Congestion
Control", RFC 9002, DOI 10.17487/RFC9002, May 2021, <https://www.rfc-
editor.org/info/rfc9002>.

[QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure QUIC", RFC 9001, DOI
10.17487/RFC9001, May 2021, <https://www.rfc-editor.org/info/rfc9001>.

[QUIC-VN] Schinazi, D. and E. Rescorla, "Compatible Version Negotiation for QUIC", RFC
9368, DOI 10.17487/RFC9368, May 2023, <https://www.rfc-editor.org/info/
rfc9368>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

10.2. Informative References

[HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114, June 2022, <https://
www.rfc-editor.org/info/rfc9114>.

[QUIC-INVARIANTS] Thomson, M., "Version-Independent Properties of QUIC", RFC 8999, DOI
10.17487/RFC8999, May 2021, <https://www.rfc-editor.org/info/rfc8999>.

[RFC7301] Friedl, S., Popov, A, Langley, A., and E. Stephan, "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension", RFC 7301, DOI 10.17487/
RFC7301, July 2014, <https://www.rfc-editor.org/info/rfc7301>.

[RFC7838] Nottingham, M., McManus, P, and J. Reschke, "HTTP Alternative Services", RFC
7838, DOI 10.17487/RFC7838, April 2016, <https://www.rfc-editor.org/info/
rfc7838>.

[RFC9250] Huitema, C., Dickinson, S., and A. Mankin, "DNS over Dedicated QUIC
Connections", RFC 9250, DOI 10.17487/RFC9250, May 2022, <https://www.rfc-
editor.org/info/rfc9250>.

Duke Standards Track Page 8


https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9368
https://www.rfc-editor.org/info/rfc9368
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://www.rfc-editor.org/info/rfc9250
https://www.rfc-editor.org/info/rfc9250

RFC 9369 QUICv2 May 2023

Appendix A. Sample Packet Protection

This section shows examples of packet protection so that implementations can be verified
incrementally. Samples of Initial packets from both the client and server plus a Retry packet are
defined. These packets use an 8-byte client-chosen Destination Connection ID of
0x8394c8f03e515708. Some intermediate values are included. All values are shown in
hexadecimal.

A.1. Keys

The labels generated during the execution of the HKDF-Expand-Label function (that is,
HkdfLabel.label) and part of the value given to the HKDF-Expand function in order to produce its
output are:

client in: 00200f746c73313320636¢c69656e7420696e00
server in: 00200f746c7331332073657276657220696e00
quicv2 key: 001010746¢73313320717569637632206b657900
quicv2 iv: 000c0f746¢7331332071756963763220697600
quicv2 hp: 00100£746¢7331332071756963763220687000

The initial secret is common:

initial_secret = HKDF-Extract(initial_salt, cid)
= 2062e8b3cd8d52092614b80871dBaalfh
7c2e3ac193f78b286e72d8f5751f6aba

The secrets for protecting client packets are:

client_initial_secret

HKDF-Expand-Label(initial_secret, "client in", "", 32)
14ec9d6eb9fd7af83bf5a668bc17a7e2
83766aade7ecd0891f70f9ff7f4bf47b

key = HKDF-Expand-Label(client_initial_secret, "quicv2 key", "", 16)
= 8b1aBbc121284290a29e0971b5cdB45d

iv = HKDF-Expand-Label(client_initial_secret, "quicv2 iv", "", 12)
= 91f73e2351d8fa91660e909f

hp HKDF-Expand-Label(client_initial_secret, "quicv2 hp", "", 16)

45b95e15235d6f45a6b19cbcb8294ba9

The secrets for protecting server packets are:

Duke Standards Track Page 9



RFC 9369 QUICv2 May 2023

server_initial_secret
= HKDF-Expand-Label(initial_secret,
= 0263db1782731bf4588e7e4d93b74639
07cb8cd8200b5da55a8bd488eafc37c1

"server in", "", 32)

key = HKDF-Expand-Label(server_initial_secret, "quicv2 key", "", 16)

82db637861d55e1d011f19ea71d5d2a7

iv HKDF-Expand-Label(server_initial_secret, "t12)

dd13c276499c0249d3310652

"quicv2 iv",

HKDF-Expand-Label(server_initial_secret, "t,16)

edf6d05c83121201b436e16877593c3a

hp "quicv2 hp",

A.2.

The client sends an Initial packet. The unprotected payload of this packet contains the following
CRYPTO frame, plus enough PADDING frames to make a 1162-byte payload:

Client Initial

060040f1010000ed0303ebf8fa56f129
04fe3a47f06a2b69484c000004130113
616d706c652e636T6dffD1000100000a
04616c706€0005000501000000000033
baf4559fedba753de171fa71f50f1cel
0d0010000e0403050306030203080408
3900320408ffffffffffffffffo50480
75300901100f088394c8f0B3e51570806

39b9584a3896472ec40bb863cfd3e868
02010000c000000D 10000006578
0008000600 1d00170018001000070005
00260024001d00209370b2c9caa47fba
5d43e994ec74d748002b000302030400
050806002d00020101001c0002400100
0offffo7048000ffff08011001048000
048000ffff

The unprotected header indicates a length of 1182 bytes: the 4-byte packet number, 1162 bytes of
frames, and the 16-byte authentication tag. The header includes the connection ID and a packet
number of 2:

d36b3343cf088394c8f03e5157080000449e00000002

Protecting the payload produces an output that is sampled for header protection. Because the
header uses a 4-byte packet number encoding, the first 16 bytes of the protected payload is
sampled and then applied to the header as follows:

sample = ffe67b6abcdh4298b485dd04de806071

mask = AES-ECB(hp, sample)[0..4]

94a0c95e80

header[0] *= mask[B8] & 6x0f

= d7
header[18..21] *= mask[1..4]
= abc95e82
header = d76b3343cf088394c8f03e5157080000449ea0c95e82
Duke Standards Track Page 10



RFC 9369

The resulting protected packet is:

d76b3343cf088394c8f03e5157080000
dd04de806071bfB3dceebfal62e75d6¢c
9f9a3dd4425ae4d0992cfff18ecfofdb
250f2c4f0eB202b70785b7946e992e58
12834e3f249a78d395e0d18f4d766004
cb9122faa9f1df66c392079a1b40f0de
18f6625efce3bbdefbba7e4b37a40f77
12ae50b187¢1433¢c0fB28edcc4c2838b
d396ae5a3fb512384b2fdd851f784a65
6f7521a3f6c7d5dd3ec9b3f233773d4b
bcfb7966fc49b393f0061d974a2706df
636e7c0cOfed4ebBf697545460c806910
ac7cf4ed77f322e8fa894b6a83810a34
16ccce2d01931f958bb3850a833f7ae43
4df16efaf6ddea94e2c50b4cd1dfed60
fdf85290fdd893d577b1131a610efb6ab
8017c25ca9052ca1079d8b78aebd4787
14d19d613701f8149748¢c72f132f0fc99
9c63a344d6a2ae8aa8e51b7b90a4a806
abfe43960977¢c87471cf9ad40674d30e1
80bf4dc8b52aBbaB31758022eb025cdd
848265e3e5eb72dfe8299ad7481a4083
d703dd84045a274ae8bfa73379661388
c4d526250235ddcd6776fc77bc97e7a4
7e27a096d37a1a86952ec71bd89a3e9a
f6b5b984d4d3dfan33c1bb7e4f0037fe
10d3f270121b493ce85054ef58bada42
3d6758158197107¢c14ebb193230cd115
06ebfde206bfbBfcbcBedc4ebec30966
8dfce39ab71e7¢32d318d136b6100671
34b90c9058f8632¢c798d4490da498730
€86215c2d54e6670e07383a27bbffb5a
5d3b22dc2be80919b490437ae4f36a0a
8d209d0fa6536d27a5d6fbb17641cde?2
d5974ee12e5cf7d5da4d6a31123041f3
6f4c4938ae79324dc402894b44faf8af
9a37ddec600545473cfb5a05e08d0b20
al18b2faa745b6fe189cf772a9f84cbfc

QUICV2

449eaBc95e82ffe67bb6abcdb4298b485
96058bdbfb127cdfcbf903388e99ad04
5a842d09747052f17ac2053d21f57c5d
ab9ac52deab6774d4f03b55545243cf1a
f1a2674802a747eaa%901c3f10cda5500
1c6054196a11cbead4Pafbb6ef5253cd68
32e093daa7d52190935b8da58976ff33
6a9bfc226ca4b4530e7a4cceelbfa2a3
e03f2c4fbe11a53¢7777¢c023462239dd
46d23cc375eb198c63301¢c218011f6520
8c4a9449f11d7f3d2dcbb90c6b877045
d2c355f1d253bc9d2452aaa549e27a1f
b361901751a6f5eb65a0326e07de7c12
2b65bc5a53975c155aa4bcb4f7b2c4e5
17e0e9d02900cffe1935e0491d77ffb4
c32b2ee0293617a37cbbB8b847741¢c3b
6d330a30f6a8cb6d61dd1ab5589329de7
£34d766c6938597040d8f9e2bb522ff9
105fcbca31506c446151adfeceb51b91
0d6a7f03c63bd5d4317f68ff325ba3bd
770b44d6d6cf0670f4e990b22347a7db
22cac55786e52f633b2fbb6b614eaed18
d6991fe39b0d93debb41700b41f90a15
17ebcb31600d01e57f32162a8560cacc
30a2a26162984d77401f81193e8238e61
bf406d91cOdccf32acf423cfale70710
310138feB81adbB4e2bd901f2f13458b
7380aa79cael1374a7c1e5bbcb80ee23e
1bdd9068d532ebBcb6adc38b7ca7331dce
alae6ab6600e3899f31f0eed19e3417d1
7cba922d61¢39805d072b589bd52fdf1
ddf47d66aa85a0c6f9f32e59d85a44dd
e55edf1dOb5ch4e9a3ecabee93dfcbe3
7525d61093f1b28672d111b2b4ae5f89
3e61407e76cffcdcfd7e19ba58cf4b53
bab35282ab659d13c93f70412e85cbh19
9973b2172b4d21fb69745a262ccde96b

May 2023

A.3. Server Initial

The server sends the following payload in response, including an ACK frame, a CRYPTO frame,
and no PADDING frames:

020000000006004052020000560303ee fce7f7b37ba1d1632e96677825ddf739
88cfc79825df566dc5430b9a045a1200 130100002e00330024001d00209d3c94
0d89690b84d08a60993c144ecab684d10 81287¢c¢834d5311bcf32bb9da1a002bbo
020304

The header from the server includes a new connection ID and a 2-byte packet number encoding
for a packet number of 1:

Duke Standards Track Page 11



RFC 9369 QUICv2 May 2023

d16b3343cf0008f067a5502a4262b50040750001

As a result, after protection, the header protection sample is taken, starting from the third
protected byte:

sample = 6f05d8a4398c47089698baeea26b91eb
mask = 4dd92e91ea
header = dc6b3343cf0008fB67a5502a4262b5004075d92f

The final protected packet is then:

dc6b3343cf0008T067a5502a4262b500 4075d92faaf16f05d8a4398c47089698
baeea26b91eb761d9b89237bbf872630 17915358230035f7fd3945d88965¢cf17
f9af6e16886c61bfc703106fbaf3cbh4c fa52382dd16a393e42757507698075b2
c984c707f0a0812d8cd5a6881eaf21ce da98f4bd23f6fela3e2c43edd9ce7ca8
4bed8521e2e140

A.4. Retry

This shows a Retry packet that might be sent in response to the Initial packet in Appendix A.2.
The integrity check includes the client-chosen connection ID value of 0x8394c8f03e515708, but
that value is not included in the final Retry packet:

cf6b3343cfO0O8fB67a5502a4262b574 6f6b656ec8646ce8bfe33952d9555436
65dcc7b6

A.5. ChaCha20-Poly1305 Short Header Packet

This example shows some of the steps required to protect a packet with a short header. It uses
AEAD_CHACHA20_POLY1305.

In this example, TLS produces an application write secret from which a server uses HKDF-
Expand-Label to produce four values: a key, an Initialization Vector (IV), a header protection key,
and the secret that will be used after keys are updated (this last value is not used further in this
example).

Duke Standards Track Page 12



RFC 9369 QUICv2 May 2023

secret
= 9ac312a7f877468ebe69422748ad00a
5443118203a07d6060f688f30121632b

key = HKDF-Expand-Label(secret, "quicv2 key", "", 32)
= 3bfcddd72bcf02541d7faddd1f5f%eee
a817e09a6963ablebc7dfOf9a1bab9of2
iv = HKDF-Expand-Label(secret, "quicv2 iv", "", 12)
= abb5bc6ab7dafce30ffff5dd
hp = HKDF-Expand-Label(secret, "quicv2 hp", "", 32)
= d659760d2ba434a226fd37b35c69e2da
8211d10c4f12538787d65645d5d1b8e?2
ku HKDF-Expand-Label(secret, "quicv2 ku", "", 32)

c69374c49e3d2a9466fa689e49d476db
5d0dfbc87d32ceeaab6343fd0ae4c7d88

The following shows the steps involved in protecting a minimal packet with an empty
Destination Connection ID. This packet contains a single PING frame (that is, a payload of just
0x01) and has a packet number of 654360564. In this example, using a packet number of length 3
(that is, 49140 is encoded) avoids having to pad the payload of the packet; PADDING frames
would be needed if the packet number is encoded on fewer bytes.

pn = 654360564 (decimal)
nonce = abb5bcbab7dafce328ff4a29
unprotected header = 4200bff4

payload plaintext = 01

payload ciphertext 0ae7b6b932bc27d786f4bc2bb20f2162ba

The resulting ciphertext is the minimum size possible. One byte is skipped to produce the sample
for header protection.

sample = e7b6b932bc27d786f4bc2bb20f2162ba
mask = 97580e32bf
header = 5558b1c6

The protected packet is the smallest possible packet size of 21 bytes.

packet = 5558b1c60ae7b6b932bc27d786f4bc2bb26f2162ba

Acknowledgments

The author would like to thank Christian Huitema, Lucas Pardue, Kyle Rose, Anthony Rossi,
Zahed Sarker, David Schinazi, Tatsuhiro Tsujikawa, and Martin Thomson for their helpful
suggestions.

Duke Standards Track Page 13



RFC 9369 QUICv2 May 2023

Author's Address

Martin Duke
Google LLC
Email: martin.h.duke@gmail.com

Duke Standards Track Page 14


mailto:martin.h.duke@gmail.com

	RFC 9369
	QUIC Version 2
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Differences with QUIC Version 1
	3.1. Version Field
	3.2. Long Header Packet Types
	3.3. Cryptography Changes
	3.3.1. Initial Salt
	3.3.2. HMAC-based Key Derivation Function (HKDF) Labels
	3.3.3. Retry Integrity Tag


	4. Version Negotiation Considerations
	4.1. Compatible Negotiation Requirements

	5. TLS Resumption and NEW_TOKEN Tokens
	6. Ossification Considerations
	7. Applicability
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Sample Packet Protection
	A.1. Keys
	A.2. Client Initial
	A.3. Server Initial
	A.4. Retry
	A.5. ChaCha20-Poly1305 Short Header Packet

	Acknowledgments
	Author's Address


