
RFC 9165
Additional Control Operators for the Concise Data
Definition Language (CDDL)

Abstract
The Concise Data Definition Language (CDDL), standardized in RFC 8610, provides "control
operators" as its main language extension point.

The present document defines a number of control operators that were not yet ready at the time
RFC 8610 was completed: .plus, .cat, and .det for the construction of constants; .abnf/.abnfb
for including ABNF (RFC 5234 and RFC 7405) in CDDL specifications; and .feature for indicating
the use of a non-basic feature in an instance.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9165
Standards Track
December 2021
2070-1721

 C. Bormann
Universität Bremen TZI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9165

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Terminology

2. Computed Literals

2.1. Numeric Addition

2.2. String Concatenation

2.3. String Concatenation with Dedenting

3. Embedded ABNF

4. Features

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Author's Address

1. Introduction
The Concise Data Definition Language (CDDL), standardized in , provides "control
operators" as its main language extension point ().

The present document defines a number of control operators that were not yet ready at the time
 was completed:

[RFC8610]
Section 3.8 of [RFC8610]

[RFC8610]

Name Purpose

.plus Numeric addition

.cat String concatenation

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 2

https://www.rfc-editor.org/rfc/rfc8610#section-3.8

Name Purpose

.det String concatenation, pre-dedenting

.abnf ABNF in CDDL (text strings)

.abnfb ABNF in CDDL (byte strings)

.feature Indicates name of feature used (extension point)

Table 1: New Control Operators in this Document

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

This specification uses terminology from . In particular, with respect to control
operators, "target" refers to the left-hand side operand and "controller" to the right-hand side
operand. "Tool" refers to tools along the lines of that described in . Note
also that the data model underlying CDDL provides for text strings as well as byte strings as two
separate types, which are then collectively referred to as "strings".

The term "ABNF" in this specification stands for the combination of and ; i.e.,
the ABNF control operators defined by this document allow use of the case-sensitive extensions
defined in .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8610]

Appendix F of [RFC8610]

[RFC5234] [RFC7405]

[RFC7405]

2. Computed Literals
CDDL as defined in does not have any mechanisms to compute literals. To cover a large
part of the use cases, this specification adds three control operators: .plus for numeric addition,
.cat for string concatenation, and .det for string concatenation with dedenting of both sides
(target and controller).

For these operators, as with all control operators, targets and controllers are types. The resulting
type is therefore formally a function of the elements of the cross-product of the two types. Not all
tools may be able to work with non-unique targets or controllers.

[RFC8610]

2.1. Numeric Addition
In many cases, numbers are needed relative to a base number in a specification. The .plus
control identifies a number that is constructed by adding the numeric values of the target and the
controller.

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8610#appendix-F

The target and controller both be numeric. If the target is a floating point number and the
controller an integer number, or vice versa, the sum is converted into the type of the target;
converting from a floating point number to an integer selects its floor (the largest integer less
than or equal to the floating point number, i.e., rounding towards negative infinity).

The example in Figure 1 contains the generic definition of a CDDL group interval that gives a
lower and upper bound and, optionally, a tolerance. The parameter BASE allows the non-
conflicting use of a multiple of these interval groups in one map by assigning different labels to
the entries of the interval. The rule rect combines two of these interval groups into a map, one
group for the X dimension (using 0, 1, and 2 as labels) and one for the Y dimension (using 3, 4, and
5 as labels).

MUST

Figure 1: An Example of Addition to a Base Value

interval<BASE> = (
 BASE => int ; lower bound
 (BASE .plus 1) => int ; upper bound
 ? (BASE .plus 2) => int ; tolerance
)

X = 0
Y = 3
rect = {
 interval<X>
 interval<Y>
}

2.2. String Concatenation
It is often useful to be able to compose string literals out of component literals defined in different
places in the specification.

The .cat control identifies a string that is built from a concatenation of the target and the
controller. The target and controller both be strings. The result of the operation has the
same type as the target. The concatenation is performed on the bytes in both strings. If the target
is a text string, the result of that concatenation be valid UTF-8.

MUST

MUST

Figure 2: An Example of Concatenation of Text and Byte Strings

c = "foo" .cat '
 bar
 baz
'
; on a system where the newline is \n, is the same string as:
b = "foo\n bar\n baz\n"

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 4

The example in Figure 2 builds a text string named c from concatenating the target text string
"foo" and the controller byte string entered in a text form byte string literal. (This particular
idiom is useful when the text string contains newlines, which, as shown in the example for b, may
be harder to read when entered in the format that the pure CDDL text string notation inherits
from JSON.)

2.3. String Concatenation with Dedenting
Multi-line string literals for various applications, including embedded ABNF (Section 3), need to
be set flush left, at least partially. Often, having some indentation in the source code for the literal
can promote readability, as in Figure 3.

The control operator .det works like .cat, except that both arguments (target and controller)
are independently dedented before the concatenation takes place.

For the first rule in Figure 3, the result is equivalent to Figure 4.

For the purposes of this specification, we define "dedenting" as:

determining the smallest amount of leftmost blank space (number of leading space
characters) present in all the non-blank lines, and
removing exactly that number of leading space characters from each line. For blank (blank
space only or empty) lines, there may be fewer (or no) leading space characters than this
amount, in which case all leading space is removed.

(The name .det is a shortcut for "dedenting cat". The maybe more obvious name .dedcat has
not been chosen as it is longer and may invoke unpleasant images.)

Figure 3: An Example of Dedenting Concatenation

oid = bytes .abnfb ("oid" .det cbor-tags-oid)
roid = bytes .abnfb ("roid" .det cbor-tags-oid)

cbor-tags-oid = '
 oid = 1*arc
 roid = *arc
 arc = [nlsb] %x00-7f
 nlsb = %x81-ff *%x80-ff
'

Figure 4: Dedenting Example: Result of First .det

oid = bytes .abnfb 'oid
oid = 1*arc
roid = *arc
arc = [nlsb] %x00-7f
nlsb = %x81-ff *%x80-ff
'

1.

2.

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 5

Occasionally, dedenting of only a single item is needed. This can be achieved by using this
operator with an empty string, e.g., "" .det rhs or lhs .det "", which can in turn be
combined with a .cat: in the construct lhs .cat ("" .det rhs), only rhs is dedented.

3. Embedded ABNF
Many IETF protocols define allowable values for their text strings in ABNF . It
is often desirable to define a text string type in CDDL by employing existing ABNF embedded into
the CDDL specification. Without specific ABNF support in CDDL, that ABNF would usually need to
be translated into a regular expression (if that is even possible).

ABNF is added to CDDL in the same way that regular expressions were added: by defining a .abnf
control operator. The target is usually text or some restriction on it, and the controller is the text
of an ABNF specification.

There are several small issues; the solutions are given here:

ABNF can be used to define byte sequences as well as UTF-8 text strings interpreted as
Unicode scalar sequences. This means this specification defines two control operators:
.abnfb for ABNF denoting byte sequences and .abnf for denoting sequences of Unicode
scalar values (code points) represented as UTF-8 text strings. Both control operators can be
applied to targets of either string type; the ABNF is applied to the sequence of bytes in the
string and interprets it as a sequence of bytes (.abnfb) or as a sequence of code points
represented as an UTF-8 text string (.abnf). The controller string be a string. When a
byte string, it be valid UTF-8 and is interpreted as the text string that has the same
sequence of bytes.
ABNF defines a list of rules, not a single expression (called "elements" in). This is
resolved by requiring the controller string to be one valid "element", followed by zero or more
valid "rules" separated from the element by a newline; thus, the controller string can be built
by preceding a piece of valid ABNF by an "element" that selects from that ABNF and a
newline.
For the same reason, ABNF requires newlines; specifying newlines in CDDL text strings is
tedious (and leads to essentially unreadable ABNF). The workaround employs the .cat
operator introduced in Section 2.2 and the syntax for text in byte strings. As is customary for
ABNF, the syntax of ABNF itself (not the syntax expressed in ABNF!) is relaxed to allow a
single line feed as a newline:

One set of rules provided in an ABNF specification is often used in multiple positions,
particularly staples such as DIGIT and ALPHA. (Note that all rules referenced need to be
defined in each ABNF operator controller string -- there is no implicit import of core ABNF
rules from or other rules.) The composition this calls for can be provided by the
.cat operator and/or by .det if there is indentation to be disposed of.

[RFC5234] [RFC7405]

•

MUST
MUST

• [RFC5234]

•

 CRLF = %x0A / %x0D.0A

•

[RFC5234]

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 6

These points are combined into an example in Figure 5, which uses ABNF from to
specify one of each of the Concise Binary Object Representation (CBOR) tags defined in
and .

[RFC3339]
[RFC8943]

[RFC8949]

Figure 5: An Example of Employing ABNF from RFC 3339 for Defining CBOR Tags

; for RFC 8943
Tag1004 = #6.1004(text .abnf full-date)
; for RFC 8949
Tag0 = #6.0(text .abnf date-time)

full-date = "full-date" .cat rfc3339
date-time = "date-time" .cat rfc3339

; Note the trick of idiomatically starting with a newline, separating
; off the element in the concatenations above from the rule-list
rfc3339 = '
 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on
 ; month/year
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap sec
 ; rules
 time-secfrac = "." 1*DIGIT
 time-numoffset = ("+" / "-") time-hour ":" time-minute
 time-offset = "Z" / time-numoffset

 partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
 full-date = date-fullyear "-" date-month "-" date-mday
 full-time = partial-time time-offset

 date-time = full-date "T" full-time
' .det rfc5234-core

rfc5234-core = '
 DIGIT = %x30-39 ; 0-9
 ; abbreviated here
'

4. Features
Commonly, the kind of validation enabled by languages such as CDDL provides a Boolean result:
valid or invalid.

In rapidly evolving environments, this is too simplistic. The data models described by a CDDL
specification may continually be enhanced by additional features, and it would be useful even for
a specification that does not yet describe a specific future feature to identify the extension point
the feature can use and accept such extensions while marking them as extensions.

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 7

The .feature control annotates the target as making use of the feature named by the controller.
The latter will usually be a string. A tool that validates an instance against that specification may
mark the instance as using a feature that is annotated by the specification.

More specifically, the tool's diagnostic output might contain the controller (right-hand side) as a
feature name and the target (left-hand side) as a feature detail. However, in some cases, the target
has too much detail, and the specification might want to hint to the tool that more limited detail is
appropriate. In this case, the controller should be an array, with the first element being the feature
name (that would otherwise be the entire controller) and the second element being the detail
(usually another string), as illustrated in Figure 6.

Figure 7 shows what could be the definition of a person, with potential extensions beyond name
and organization being marked further-person-extension. Extensions that are known at
the time this definition is written can be collected into $$person-extensions. However, future
extensions would be deemed invalid unless the wildcard at the end of the map is added. These
extensions could then be specifically examined by a user or a tool that makes use of the
validation result; the label (map key) actually used makes a fine feature detail for the tool's
diagnostic output.

Leaving out the entire extension point would mean that instances that make use of an extension
would be marked as wholesale invalid, making the entire validation approach much less useful.
Leaving the extension point in but not marking its use as special would render mistakes (such as
using the label "organisation" instead of "organization") invisible.

Figure 8 shows another example where .feature provides for type extensibility.

Figure 6: Providing Explicit Detail with .feature

foo = {
 kind: bar / baz .feature (["foo-extensions", "bazify"])
}
bar = ...
baz = ... ; complex stuff that doesn't all need to be in the detail

Figure 7: Map Extensibility with .feature

person = {
 ? name: text
 ? organization: text
 $$person-extensions
 * (text .feature "further-person-extension") => any
}

$$person-extensions //= (? bloodgroup: text)

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 8

A CDDL tool may simply report the set of features being used; the control then only provides
information to the process requesting the validation. One could also imagine a tool that takes
arguments, allowing the tool to accept certain features and reject others (enable/disable). The
latter approach could, for instance, be used for a JSON/CBOR switch, as illustrated in Figure 9,
using Sensor Measurement Lists (SenML) as the example data model used with both
JSON and CBOR.

It remains to be seen if the enable/disable approach can lead to new idioms of using CDDL. The
language currently has no way to enforce mutually exclusive use of features, as would be needed
in this example.

Figure 8: Type Extensibility with .feature

allowed-types = number / text / bool / null
 / [* number] / [* text] / [* bool]
 / (any .feature "allowed-type-extension")

[RFC8428]

Figure 9: Describing Variants with .feature

SenML-Record = {
; ...
 ? v => number
; ...
}
v = JC<"v", 2>
JC<J,C> = J .feature "json" / C .feature "cbor"

5. IANA Considerations
IANA has registered the contents of Table 2 into the "CDDL Control Operators" registry of

:[IANA.cddl]

Name Reference

.plus RFC 9165

.cat RFC 9165

.det RFC 9165

.abnf RFC 9165

.abnfb RFC 9165

.feature RFC 9165

Table 2: New Control Operators

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 9

[IANA.cddl]

[RFC2119]

[RFC5234]

[RFC7405]

[RFC8174]

[RFC8610]

[RFC3339]

[RFC8428]

7. References

7.1. Normative References

, ,
.

, , ,
, , March 1997,
.

 and , ,
, , , January 2008,

.

, , ,
, December 2014, .

, , ,
, , May 2017,
.

, , and ,

, ,
, June 2019, .

7.2. Informative References

 and , ,
, , July 2002, .

, , , , and ,
, , , August 2018,

.

6. Security Considerations
The security considerations of apply.

While both and state that security is truly believed to be irrelevant to the
respective document, the use of formal description techniques cannot only simplify but
sometimes also complicate a specification. This can lead to security problems in
implementations and in the specification itself. As with CDDL itself, ABNF should be judiciously
applied, and overly complex (or "cute") constructions should be avoided.

[RFC8610]

[RFC5234] [RFC7405]

IANA "Concise Data Definition Language (CDDL)" <https://www.iana.org/
assignments/cddl>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications: ABNF"
STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://www.rfc-
editor.org/info/rfc5234>

Kyzivat, P. "Case-Sensitive String Support in ABNF" RFC 7405 DOI 10.17487/
RFC7405 <https://www.rfc-editor.org/info/rfc7405>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/rfc3339>

Jennings, C. Shelby, Z. Arkko, J. Keranen, A. C. Bormann "Sensor
Measurement Lists (SenML)" RFC 8428 DOI 10.17487/RFC8428
<https://www.rfc-editor.org/info/rfc8428>

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 10

https://www.iana.org/assignments/cddl
https://www.iana.org/assignments/cddl
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc8428

[RFC8943]

[RFC8949]

, , and ,
, , , November 2020,

.

 and , ,
, , , December 2020,

.

Jones, M. Nadalin, A. J. Richter "Concise Binary Object Representation
(CBOR) Tags for Date" RFC 8943 DOI 10.17487/RFC8943 <https://
www.rfc-editor.org/info/rfc8943>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Acknowledgements
 suggested several improvements. The .feature feature was developed out of a

discussion with . helped isolate the need for .det.

.det is an abbreviation for "dedenting cat", but Det is also the name of a German TV cartoon
character created in the 1960s.

Jim Schaad
Henk Birkholz Paul Kyzivat

Author's Address
Carsten Bormann
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 +49-421-218-63921 Phone:
 cabo@tzi.org Email:

RFC 9165 CDDL Control Operators December 2021

Bormann Standards Track Page 11

https://www.rfc-editor.org/info/rfc8943
https://www.rfc-editor.org/info/rfc8943
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 9165
	Additional Control Operators for the Concise Data Definition Language (CDDL)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Computed Literals
	2.1. Numeric Addition
	2.2. String Concatenation
	2.3. String Concatenation with Dedenting

	3. Embedded ABNF
	4. Features
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Author's Address

