
RFC 8937
Randomness Improvements for Security Protocols

Abstract
Randomness is a crucial ingredient for Transport Layer Security (TLS) and related security
protocols. Weak or predictable "cryptographically secure" pseudorandom number generators
(CSPRNGs) can be abused or exploited for malicious purposes. An initial entropy source that
seeds a CSPRNG might be weak or broken as well, which can also lead to critical and systemic
security problems. This document describes a way for security protocol implementations to
augment their CSPRNGs using long-term private keys. This improves randomness from broken or
otherwise subverted CSPRNGs.

This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

Stream: Internet Research Task Force (IRTF)
RFC: 8937
Category: Informational
Published: October 2020
ISSN: 2070-1721
Authors: C. Cremers

CISPA
L. Garratt
Cisco Meraki

S. Smyshlyaev
CryptoPro

N. Sullivan
Cloudflare

C. Wood
Cloudflare

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the
results of Internet-related research and development activities. These results might not be
suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group
of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are
not a candidate for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8937

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Cremers, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8937
https://www.rfc-editor.org/info/rfc8937

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions Used in This Document

3. Randomness Wrapper

4. Tag Generation

5. Application to TLS

6. Implementation Guidance

7. IANA Considerations

8. Security Considerations

9. Comparison to RFC 6979

10. References

10.1. Normative References

10.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction
Secure and properly implemented random number generators, or "cryptographically secure"
pseudorandom number generators (CSPRNGs), should produce output that is indistinguishable
from a random string of the same length. CSPRNGs are critical building blocks for TLS and
related transport security protocols. TLS in particular uses CSPRNGs to generate several values,
such as ephemeral key shares and ClientHello and ServerHello random values. CSPRNG failures,
such as the Debian bug described in , can lead to insecure TLS connections. CSPRNGs
may also be intentionally weakened to cause harm . Initial entropy sources can also be
weak or broken, and that would lead to insecurity of all CSPRNG instances seeded with them. In
such cases where CSPRNGs are poorly implemented or insecure, an adversary, Adv, may be able
to distinguish its output from a random string or predict its output and recover secret key
material used to protect the connection.

[DebianBug]
[DualEC]

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 2

https://trustee.ietf.org/license-info

This document proposes an improvement to randomness generation in security protocols
inspired by the "NAXOS trick" . Specifically, instead of using raw randomness where
needed, e.g., in generating ephemeral key shares, a function of a party's long-term private key is
mixed into the entropy pool. In the NAXOS key exchange protocol, raw random value x is
replaced by H(x, sk), where sk is the sender's private key. Unfortunately, as private keys are often
isolated in Hardware Security Modules (HSMs), direct access to compute H(x, sk) is impossible.
Moreover, some HSM APIs may only offer the option to sign messages using a private key, yet
offer no other operations involving that key. An alternate, yet functionally equivalent
construction, is needed.

The approach described herein replaces the NAXOS hash with a keyed hash, or pseudorandom
function (PRF), where the key is derived from a raw random value and a private key signature.
Implementations apply this technique a) when indirect access to a private key is
available and CSPRNG randomness guarantees are dubious or b) to provide stronger guarantees
about possible future issues with the randomness. Roughly, the security properties provided by
the proposed construction are as follows:

If the CSPRNG works fine (that is, in a certain adversary model, the CSPRNG output is
indistinguishable from a truly random sequence), then the output of the proposed
construction is also indistinguishable from a truly random sequence in that adversary
model.
Adv with full control of a (potentially broken) CSPRNG and ability to observe all outputs of
the proposed construction does not obtain any non-negligible advantage in leaking the
private key (in the absence of side channel attacks).
If the CSPRNG is broken or controlled by Adv, the output of the proposed construction
remains indistinguishable from random, provided that the private key remains unknown to
Adv.

This document represents the consensus of the Crypto Forum Research Group (CFRG).

[NAXOS]

SHOULD

1.

2.

3.

2. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Randomness Wrapper
The output of a properly instantiated CSPRNG should be indistinguishable from a random string
of the same length. However, as previously discussed, this is not always true. To mitigate this
problem, we propose an approach for wrapping the CSPRNG output with a construction that
mixes secret data into a value that may be lacking randomness.

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 3

Let G(n) be an algorithm that generates n random bytes, i.e., the output of a CSPRNG. Define an
augmented CSPRNG G' as follows. Let Sig(sk, m) be a function that computes a signature of
message m given private key sk. Let H be a cryptographic hash function that produces output of
length M. Let Extract(salt, IKM) be a randomness extraction function, e.g., HKDF-Extract

, which accepts a salt and input keying material (IKM) parameter and produces a
pseudorandom key of L bytes suitable for cryptographic use. It must be a secure PRF (for salt as a
key of length M) and preserve uniformness of IKM (for details, see). L be a
fixed length. Let Expand(k, info, n) be a variable-length output PRF, e.g., HKDF-Expand ,
that takes as input a pseudorandom key k of L bytes, info string, and output length n, and
produces output of n bytes. Finally, let tag1 be a fixed, context-dependent string, and let tag2 be a
dynamically changing string (e.g., a counter) of L' bytes. We require that L >= n - L' for each value
of tag2.

The construction works as follows. Instead of using G(n) when randomness is needed, use G'(n),
where

Functionally, this expands n random bytes from a key derived from the CSPRNG output and
signature over a fixed string (tag1). See Section 4 for details about how "tag1" and "tag2" should
be generated and used per invocation of the randomness wrapper. Expand() generates a string
that is computationally indistinguishable from a truly random string of n bytes. Thus, the
security of this construction depends upon the secrecy of H(Sig(sk, tag1)) and G(L). If the
signature is leaked, then security of G'(n) reduces to the scenario wherein randomness is
expanded directly from G(L).

If a private key sk is stored and used inside an HSM, then the signature calculation is
implemented inside it, while all other operations (including calculation of a hash function,
Extract function, and Expand function) can be implemented either inside or outside the HSM.

Sig(sk, tag1) need only be computed once for the lifetime of the randomness wrapper and
 be used or exposed beyond its role in this computation. Additional recommendations for

tag1 are given in the following section.

Sig be a deterministic signature function, e.g., deterministic Elliptic Curve Digital Signature
Algorithm (ECDSA) , or use an independent (and completely reliable) entropy source,
e.g., if Sig is implemented in an HSM with its own internal trusted entropy source for signature
generation.

Because Sig(sk, tag1) can be cached, the relative cost of using G'(n) instead of G(n) tends to be
negligible with respect to cryptographic operations in protocols such as TLS (the relatively
inexpensive computational cost of HKDF-Extract and HKDF-Expand dominates when comparing
G' to G). A description of the performance experiments and their results can be found in

.

Moreover, the values of G'(n) may be precomputed and pooled. This is possible since the
construction depends solely upon the CSPRNG output and private key.

[RFC5869]

[SecAnalysis] SHOULD
[RFC5869]

 G'(n) = Expand(Extract(H(Sig(sk, tag1)), G(L)), tag2, n)

MUST
NOT

MUST
[RFC6979]

[SecAnalysis]

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 4

tag1:

tag2:

4. Tag Generation
Both tags be generated such that they never collide with another contender or owner of
the private key. This can happen if, for example, one HSM with a private key is used from several
servers or if virtual machines are cloned.

The tag construction procedure is as follows:

Constant string bound to a specific device and protocol in use. This allows caching of Sig
(sk, tag1). Device-specific information may include, for example, a Media Access Control
(MAC) address. To provide security in the cases of usage of CSPRNGs in virtual
environments, it is to incorporate all available information specific to the
process that would ensure the uniqueness of each tag1 value among different instances of
virtual machines (including ones that were cloned or recovered from snapshots). This is
needed to address the problem of CSPRNG state cloning (see). See Section 5 for
example protocol information that can be used in the context of TLS 1.3. If sk could be
used for other purposes, then selecting a value for tag1 that is different than the form
allowed by those other uses ensures that the signature is not exposed.

A nonce, that is, a value that is unique for each use of the same combination of G(L), tag1,
and sk values. The tag2 value can be implemented using a counter or a timer, provided
that the timer is guaranteed to be different for each invocation of G'(n).

MUST

RECOMMENDED

RECOMMENDED

[RY2010]

5. Application to TLS
The PRF randomness wrapper can be applied to any protocol wherein a party has a long-term
private key and also generates randomness. This is true of most TLS servers. Thus, to apply this
construction to TLS, one simply replaces the "private" CSPRNG G(n), i.e., the CSPRNG that
generates private values, such as key shares, with

G'(n) = HKDF-Expand(HKDF-Extract(H(Sig(sk, tag1)), G(L)), tag2, n)

6. Implementation Guidance
Recall that the wrapper defined in Section 3 requires L >= n - L', where L is the Extract output
length and n is the desired amount of randomness. Some applications may require n to exceed
this bound. Wrapper implementations can support this use case by invoking G' multiple times
and concatenating the results.

7. IANA Considerations
This document has no IANA actions.

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 5

8. Security Considerations
A security analysis was performed in . Generally speaking, the following security
theorem has been proven: if Adv learns only one of the signature or the usual randomness
generated on one particular instance, then, under the security assumptions on our primitives,
the wrapper construction should output randomness that is indistinguishable from a random
string.

The main reason one might expect the signature to be exposed is via a side-channel attack. It is
therefore prudent when implementing this construction to take into consideration the extra
long-term key operation if equipment is used in a hostile environment when such considerations
are necessary. Hence, it is recommended to generate a key specifically for the purposes of the
defined construction and not to use it another way.

The signature in the construction, as well as in the protocol itself, use randomness
from entropy sources with dubious security guarantees. Thus, the signature scheme either
use a reliable entropy source (independent from the CSPRNG that is being improved with the
proposed construction) or be deterministic; if the signatures are probabilistic and use weak
entropy, our construction does not help, and the signatures are still vulnerable due to repeat
randomness attacks. In such an attack, Adv might be able to recover the long-term key used in
the signature.

Under these conditions, applying this construction should never yield worse security guarantees
than not applying it, assuming that applying the PRF does not reduce entropy. We believe there is
always merit in analyzing protocols specifically. However, this construction is generic so the
analyses of many protocols will still hold even if this proposed construction is incorporated.

The proposed construction cannot provide any guarantees of security if the CSPRNG state is
cloned due to the virtual machine snapshots or process forking (see). It is

 that tag1 incorporate all available information about the environment, such as
process attributes, virtual machine user information, etc.

[SecAnalysis]

MUST NOT
MUST

[MAFS2017]
RECOMMENDED

9. Comparison to RFC 6979
The construction proposed herein has similarities with that of ; both of them use
private keys to seed a deterministic random number generator.
recommends deterministically instantiating an instance of the HMAC_DRBG pseudorandom
number generator, described in and Annex D of , using the private key sk as
the entropy_input parameter and H(m) as the nonce. The construction G'(n) provided herein is
similar, with such difference that a key derived from G(n) and H(Sig(sk, tag1)) is used as the
entropy input and tag2 is the nonce.

However, the semantics and the security properties obtained by using these two constructions
are different. The proposed construction aims to improve CSPRNG usage such that certain
trusted randomness would remain even if the CSPRNG is completely broken. Using a signature

[RFC6979]
Section 3.3 of [RFC6979]

[SP80090A] [X962]

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 6

https://www.rfc-editor.org/rfc/rfc6979#section-3.3

[RFC2119]

[RFC5869]

[RFC6979]

[RFC8174]

[DebianBug]

[DualEC]

[MAFS2017]

[NAXOS]

10. References

10.1. Normative References

, , ,
, , March 1997,
.

,
, , , May 2010,

.

,
, ,

, August 2013, .

, ,
, , , May 2017,

.

10.2. Informative References

,
, ,

, November 2009,
.

,
, , March 2016,

.

,
, January 2017,

.

,
, , November 2007,

.

scheme that requires entropy sources according to is intended for different purposes
and does not assume possession of any entropy source -- even an unstable one. For example, if in
a certain system all private key operations are performed within an HSM, then the differences
will manifest as follows: the HMAC_DRBG construction described in may be
implemented inside the HSM for the sake of signature generation, while the proposed
construction would assume calling the signature implemented in the HSM.

[RFC6979]

[RFC6979]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Krawczyk, H. and P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/
RFC6979 <https://www.rfc-editor.org/info/rfc6979>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Yilek, S., Rescorla, E., Shacham, H., Enright, B., and S. Savage "When private
keys are public: results from the 2008 Debian OpenSSL vulnerability" ICM '09
DOI 10.1145/1644893.1644896 <https://
pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf>

Bernstein, D., Lange, T., and R. Niederhagen "Dual EC: A Standardized Back
Door" DOI 10.1007/978-3-662-49301-4_17 <https://
projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf>

McGrew, D., Anderson, B., Fluhrer, S., and C. Schenefiel "PRNG Failures and TLS
Vulnerabilities in the Wild" <https://rwc.iacr.org/2017/Slides/
david.mcgrew.pptx>

LaMacchia, B., Lauter, K., and A. Mityagin "Stronger Security of Authenticated
Key Exchange" DOI 10.1007/978-3-540-75670-5_1 <https://
www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-
submitted.pdf>

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 7

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf
https://pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf
https://projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf
https://projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf
https://rwc.iacr.org/2017/Slides/david.mcgrew.pptx
https://rwc.iacr.org/2017/Slides/david.mcgrew.pptx
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf

[RY2010]

[SecAnalysis]

[SP80090A]

[X962]

,
, January 2010,

.

,
,

,
, 2020,

.

,

, , June 2015,
.

,

, , November 2005,
.

Ristenpart, T. and S. Yilek "When Good Randomness Goes Bad: Virtual Machine
Reset Vulnerabilities and Hedging Deployed Cryptography"
<https://rist.tech.cornell.edu/papers/sslhedge.pdf>

Akhmetzyanova, L., Cremers, C., Garratt, L., Smyshlyaev, S., and N. Sullivan
"Limiting the impact of unreliable randomness in deployed security protocols"
DOI 10.1109/CSF49147.2020.00027 IEEE 33rd Computer Security Foundations
Symposium (CSF), Boston, MA, USA, pp. 385-393 <https://doi.org/10.1109/
CSF49147.2020.00027>

National Institute of Standards and Technology "Recommendation for Random
Number Generation Using Deterministic Random Bit Generators, Special
Publication 800-90A Revision 1" DOI 10.6028/NIST.SP.800-90Ar1
<https://doi.org/10.6028/NIST.SP.800-90Ar1>

American National Standard for Financial Services (ANSI) "Public Key
Cryptography for the Financial Services Industry, The Elliptic Curve Digital
Signature Algorithm (ECDSA)" ANSI X9.62 <https://
www.techstreet.com/standards/x9-x9-62-2005?product_id=1327225>

Acknowledgements
We thank for her deep involvement in the security assessment in

. We thank , , and for their careful readings
and useful comments.

Liliya Akhmetzyanova
[SecAnalysis] John Mattsson Martin Thomson Rich Salz

Authors' Addresses
Cas Cremers
CISPA
Saarland Informatics Campus
Saarbruecken
Germany

 cremers@cispa.saarland Email:

Luke Garratt
Cisco Meraki
500 Terry A Francois Blvd

, San Francisco
United States of America

 lgarratt@cisco.com Email:

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 8

https://rist.tech.cornell.edu/papers/sslhedge.pdf
https://doi.org/10.1109/CSF49147.2020.00027
https://doi.org/10.1109/CSF49147.2020.00027
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://www.techstreet.com/standards/x9-x9-62-2005?product_id=1327225
https://www.techstreet.com/standards/x9-x9-62-2005?product_id=1327225
mailto:cremers@cispa.saarland
mailto:lgarratt@cisco.com

Stanislav Smyshlyaev
CryptoPro
18, Suschevsky val
Moscow
Russian Federation

 svs@cryptopro.ru Email:

Nick Sullivan
Cloudflare
101 Townsend St

, San Francisco
United States of America

 nick@cloudflare.com Email:

Christopher A. Wood
Cloudflare
101 Townsend St

, San Francisco
United States of America

 caw@heapingbits.net Email:

RFC 8937 Randomness Improvements October 2020

Cremers, et al. Informational Page 9

mailto:svs@cryptopro.ru
mailto:nick@cloudflare.com
mailto:caw@heapingbits.net

	RFC 8937
	Randomness Improvements for Security Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Randomness Wrapper
	4. Tag Generation
	5. Application to TLS
	6. Implementation Guidance
	7. IANA Considerations
	8. Security Considerations
	9. Comparison to RFC 6979
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgements
	Authors' Addresses

