
RFC 8927
JSON Type Definition

Abstract
This document proposes a format, called JSON Type Definition (JTD), for describing the shape of
JavaScript Object Notation (JSON) messages. Its main goals are to enable code generation from
schemas as well as portable validation with standardized error indicators. To this end, JTD is
intentionally limited to be no more expressive than the type systems of mainstream
programming languages. This intentional limitation, as well as the decision to make JTD schemas
be JSON documents, makes tooling atop of JTD easier to build.

This document does not have IETF consensus and is presented here to facilitate experimentation
with the concept of JTD.

Stream: Independent Submission
RFC: 8927
Category: Experimental
Published: October 2020
ISSN: 2070-1721
Author: U. Carion

Segment

Status of This Memo
This document is not an Internet Standards Track specification; it is published for examination,
experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This is a
contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has
chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8927

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Carion Experimental Page 1

https://www.rfc-editor.org/rfc/rfc8927
https://www.rfc-editor.org/info/rfc8927

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

1.2. Scope of Experiment

2. Syntax

2.1. Root vs. Non-root Schemas

2.2. Forms

2.2.1. Empty

2.2.2. Ref

2.2.3. Type

2.2.4. Enum

2.2.5. Elements

2.2.6. Properties

2.2.7. Values

2.2.8. Discriminator

2.3. Extending JTD's Syntax

3. Semantics

3.1. Allowing Additional Properties

3.2. Errors

3.3. Forms

3.3.1. Empty

3.3.2. Ref

3.3.3. Type

3.3.4. Enum

3.3.5. Elements

3.3.6. Properties

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 2

https://trustee.ietf.org/license-info

3.3.7. Values

3.3.8. Discriminator

4. IANA Considerations

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Rationale for Omitted Features

A.1. Support for 64-Bit Numbers

A.2. Support for Non-root Definitions

Appendix B. Comparison with CDDL

Appendix C. Example

Acknowledgments

Author's Address

1. Introduction
This document describes a schema language for JSON called JSON Type Definition
(JTD).

There exist many options for describing JSON data. JTD's niche is to focus on enabling code
generation from schemas; to this end, JTD's expressiveness is intentionally limited to be no more
powerful than what can be expressed in the type systems of mainstream programming
languages.

The goals of JTD are to:

Provide an unambiguous description of the overall structure of a JSON document.
Be able to describe common JSON data types and structures (that is, the data types and
structures necessary to support most JSON documents and that are widely understood in an
interoperable way by JSON implementations).
Provide a single format that is readable and editable by both humans and machines and that
can be embedded within other JSON documents. This makes JTD a convenient format for
tooling to accept as input or produce as output.
Enable code generation from JTD schemas. JTD schemas are meant to be easy to convert into
data structures idiomatic to mainstream programming languages.

[RFC8259]

•
•

•

•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 3

Provide a standardized format for error indicators when data does not conform with a
schema.

JTD is intentionally designed as a rather minimal schema language. Thus, although JTD can
describe some categories of JSON, it is not able to describe its own structure; this document uses
Concise Data Definition Language (CDDL) to describe JTD's syntax. By keeping the
expressiveness of the schema language minimal, JTD makes code generation and standardized
error indicators easier to implement.

Examples in this document use constructs from the C++ programming language. These examples
are provided to aid the reader in understanding the principles of JTD but are not limiting in any
way.

JTD's feature set is designed to represent common patterns in JSON-using applications, while still
having a clear correspondence to programming languages in widespread use. Thus, JTD
supports:

Signed and unsigned 8-, 16-, and 32-bit integers. A tool that converts JTD schemas into code
can use int8_t, uint8_t, int16_t, etc., or their equivalents in the target language, to
represent these JTD types.
A distinction between float32 and float64. Code generators can use float and double, or
their equivalents, for these JTD types.
A "properties" form of JSON objects, corresponding to some sort of struct or record. The
"properties" form of JSON objects is akin to a C++ struct.
A "values" form of JSON objects, corresponding to some sort of dictionary or associative
array. The "values" form of JSON objects is akin to a C++ std::map.
A "discriminator" form of JSON objects, corresponding to a discriminated (or "tagged") union.
The "discriminator" form of JSON objects is akin to a C++ std::variant.

The principle of common patterns in JSON is why JTD does not support 64-bit integers, as these
are usually transmitted over JSON in non-interoperable (i.e., ignoring the recommendations in

) or mutually inconsistent ways. Appendix A.1 further elaborates on why
JTD does not support 64-bit integers.

The principle of clear correspondence to common programming languages is why JTD does not
support, for example, a data type for integers up to 2**53-1.

It is expected that for many use cases, a schema language of JTD's expressiveness is sufficient.
Where a more expressive language is required, alternatives exist in CDDL and others.

This document does not have IETF consensus and is presented here to facilitate experimentation
with the concept of JTD. The purpose of the experiment is to gain experience with JTD and to
possibly revise this work accordingly. If JTD is determined to be a valuable and popular
approach, it may be taken to the IETF for further discussion and revision.

•

[RFC8610]

•

•

•

•

•

Section 2.2 of [RFC7493]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 4

https://www.rfc-editor.org/rfc/rfc7493#section-2.2

This document has the following structure. Section 2 defines the syntax of JTD. Section 3
describes the semantics of JTD; this includes determining whether some data satisfies a schema
and what error indicators should be produced when the data is unsatisfactory. Appendix A
discusses why certain features are omitted from JTD. Appendix B presents various JTD schemas
and their CDDL equivalents.

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The term "JSON Pointer", when it appears in this document, is to be understood as it is defined in
.

The terms "object", "member", "array", "number", "name", and "string" in this document are to be
interpreted as described in .

The term "instance", when it appears in this document, refers to a JSON value being validated
against a JTD schema. This value can be an entire JSON document, or it can be a value embedded
within a JSON document.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC6901]

[RFC8259]

1.2. Scope of Experiment
JTD is an experiment. Participation in this experiment consists of using JTD to validate or
document interchanged JSON messages or building tooling atop of JTD. Feedback on the results
of this experiment may be emailed to the author. Participants in this experiment are anticipated
to mostly be nodes that provide or consume JSON-based APIs.

Nodes know if they are participating in the experiment if they are validating JSON messages
against a JTD schema or if they are relying on another node to do so. Nodes are also participating
in the experiment if they are running code generated from a JTD schema.

The risk of this experiment "escaping" takes the form of a JTD-supporting node expecting another
node, which lacks such support, to validate messages against some JTD schema. In such a case,
the outcome will likely be that the nodes fail to interchange information correctly.

This experiment will be deemed successful when JTD has been implemented by multiple
independent parties and these parties successfully use JTD to facilitate information interchange
within their internal systems or between systems operated by independent parties.

If this experiment is deemed successful, and JTD is determined to be a valuable and popular
approach, it may be taken to the IETF for further discussion and revision. One possible outcome
of this discussion and revision could be that a working group produces a Standards Track
specification of JTD.

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 5

Some implementations of JTD, as well as code generators and other tooling related to JTD, are
available at .<https://github.com/jsontypedef>

2. Syntax
This section describes when a JSON document is a correct JTD schema. Because Concise Data
Definition Language (CDDL) is well suited to the task of defining complex JSON formats, such as
JTD schemas, this section uses CDDL to describe the format of JTD schemas.

JTD schemas may recursively contain other schemas. In this document, a "root schema" is one
that is not contained within another schema, i.e., it is "top level".

A JTD schema is a JSON object taking on an appropriate form. JTD schemas may contain
"additional data", discussed in Section 2.3. Root JTD schemas may optionally contain definitions
(a mapping from names to schemas).

A correct root JTD schema match the root-schema CDDL rule described in this section. A
correct non-root JTD schema match the schema CDDL rule described in this section.

MUST
MUST

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 6

https://github.com/jsontypedef

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 7

; root-schema is identical to schema, but additionally allows for
; definitions.
;
; definitions are prohibited from appearing on non-root schemas.
root-schema = {
 ? definitions: { * tstr => { schema}},
 schema,
}
; schema is the main CDDL rule defining a JTD schema.
;
; All JTD schemas are JSON objects taking on one of eight forms
; listed here.
schema = (
 ref //
 type //
 enum //
 elements //
 properties //
 values //
 discriminator //
 empty //
)
; shared is a CDDL rule containing properties that all eight schema
; forms share.
shared = (
 ? metadata: { * tstr => any },
 ? nullable: bool,
)
; empty describes the "empty" schema form.
empty = shared
; ref describes the "ref" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.2 describes these additional
; constraints in detail.
ref = (ref: tstr, shared)
; type describes the "type" schema form.
type = (
 type: "boolean"
 / "float32"
 / "float64"
 / "int8"
 / "uint8"
 / "int16"
 / "uint16"
 / "int32"
 / "uint32"
 / "string"
 / "timestamp",
 shared,
)
; enum describes the "enum" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.4 describes these additional
; constraints in detail.
enum = (enum: [+ tstr], shared)

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 8

The remainder of this section will describe constraints on JTD schemas that cannot be expressed
in CDDL. It will also provide examples of valid and invalid JTD schemas.

Figure 1: CDDL Definition of a Schema

; elements describes the "elements" schema form.
elements = (elements: { schema }, shared)
; properties describes the "properties" schema form.
;
; This CDDL rule is defined so that a schema of the "properties" form
; may omit a member named "properties" or a member named
; "optionalProperties", but not both.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.6 describes these additional
; constraints in detail.
properties = (with-properties // with-optional-properties)
with-properties = (
 properties: { * tstr => { schema }},
 ? optionalProperties: { * tstr => { schema }},
 ? additionalProperties: bool,
 shared,
)
with-optional-properties = (
 ? properties: { * tstr => { schema }},
 optionalProperties: { * tstr => { schema }},
 ? additionalProperties: bool,
 shared,
)
; values describes the "values" schema form.
values = (values: { schema }, shared)
; discriminator describes the "discriminator" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.8 describes these additional
; constraints in detail.
discriminator = (
 discriminator: tstr,
 ; Note well: this rule is defined in terms of the "properties"
 ; CDDL rule, not the "schema" CDDL rule.
 mapping: { * tstr => { properties } }
 shared,
)

2.1. Root vs. Non-root Schemas
The root-schema rule in Figure 1 permits a member named definitions, but the schema rule
does not permit for such a member. This means that only root (i.e., "top-level") JTD schemas can
have a definitions object, and subschemas may not.

Thus,

 { "definitions": {} }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 9

is a correct JTD schema, but

is not, because subschemas (such as the object at /definitions/foo) must not have a member
named definitions.

 {
 "definitions": {
 "foo": {
 "definitions": {}
 }
 }
 }

2.2. Forms
JTD schemas (i.e., JSON objects satisfying the schema CDDL rule in Figure 1) must take on one of
eight forms. These forms are defined so as to be mutually exclusive; a schema cannot satisfy
multiple forms at once.

2.2.1. Empty

The empty form is defined by the empty CDDL rule in Figure 1. The semantics of the empty form
are described in Section 3.3.1.

Despite the name "empty", schemas of the empty form are not necessarily empty JSON objects.
Like schemas of any of the eight forms, schemas of the empty form may contain members named
nullable (whose value must be true or false) or metadata (whose value must be an object) or
both.

Thus,

and

and

are correct JTD schemas of the empty form, but

 {}

 { "nullable": true }

 { "nullable": true, "metadata": { "foo": "bar" }}

 { "nullable": "foo" }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 10

is not, because the value of the member named nullable must be true or false.

2.2.2. Ref

The ref form is defined by the ref CDDL rule in Figure 1. The semantics of the ref form are
described in Section 3.3.2.

For a schema of the ref form to be correct, the value of the member named ref must refer to
one of the definitions found at the root level of the schema it appears in. More formally, for a
schema S of the ref form:

Let B be the root schema containing the schema or the schema itself if it is a root schema.
Let R be the value of the member of S with the name ref.

If the schema is correct, then B have a member D with the name definitions, and D
contain a member whose name equals R.

Thus,

is a correct JTD schema and demonstrates the point of the ref form: to avoid redefining the same
thing twice. However,

is not a correct JTD schema, as there are no top-level definitions, and so the ref form cannot
be correct. Similarly,

is not a correct JTD schema, as there is no member named bar in the top-level definitions.

•
•

MUST MUST

 {
 "definitions": {
 "coordinates": {
 "properties": {
 "lat": { "type": "float32" },
 "lng": { "type": "float32" }
 }
 }
 },
 "properties": {
 "user_location": { "ref": "coordinates" },
 "server_location": { "ref": "coordinates" }
 }
 }

 { "ref": "foo" }

 { "definitions": { "foo": {}}, "ref": "bar" }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 11

2.2.3. Type

The type form is defined by the type CDDL rule in Figure 1. The semantics of the type form are
described in Section 3.3.3.

As an example of a correct JTD schema of the type form,

is a correct JTD schema, whereas

and

are not correct schemas, as neither true nor the JSON string foo are in the list of permitted
values of the type member described in the type CDDL rule in Figure 1.

 { "type": "uint8" }

 { "type": true }

 { "type": "foo" }

2.2.4. Enum

The enum form is defined by the enum CDDL rule in Figure 1. The semantics of the enum form are
described in Section 3.3.4.

For a schema of the enum form to be correct, the value of the member named enum must be a
nonempty array of strings, and that array must not contain duplicate values. More formally, for a
schema S of the enum form:

Let E be the value of the member of S with name enum.

If the schema is correct, then there exist any pair of elements of E that encode equal
string values, where string equality is defined as in .

Thus,

is not a correct JTD schema, as the value of the member named enum must be nonempty, and

•

MUST NOT
Section 8.3 of [RFC8259]

 { "enum": [] }

 { "enum": ["a\\b", "a\u005Cb"] }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 12

https://www.rfc-editor.org/rfc/rfc8259#section-8.3

is not a correct JTD schema, as

and

encode strings that are equal by the definition of string equality given in .
By contrast,

is an example of a correct JTD schema of the enum form.

 "a\\b"

 "a\u005Cb"

Section 8.3 of [RFC8259]

 { "enum": ["PENDING", "IN_PROGRESS", "DONE"]}

2.2.5. Elements

The elements form is defined by the elements CDDL rule in Figure 1. The semantics of the
elements form are described in Section 3.3.5.

As an example of a correct JTD schema of the elements form,

is a correct JTD schema, whereas

and

are not correct schemas, as neither

nor

 { "elements": { "type": "uint8" }}

 { "elements": true }

 { "elements": { "type": "foo" } }

 true

 { "type": "foo" }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 13

https://www.rfc-editor.org/rfc/rfc8259#section-8.3

are correct JTD schemas, and the value of the member named elements must be a correct JTD
schema.

2.2.6. Properties

The properties form is defined by the properties CDDL rule in Figure 1. The semantics of the
properties form are described in Section 3.3.6.

For a schema of the properties form to be correct, properties must either be required (i.e., in
properties) or optional (i.e., in optionalProperties), but not both.

More formally, if a schema has both a member named properties (with value P) and another
member named optionalProperties (with value O), then O and P have any member
names in common; that is, no member of P may have a name equal to the name of any member
of O, under the definition of string equality given in .

Thus,

is not a correct JTD schema, as confusing appears in both properties and
optionalProperties. By contrast,

is a correct JTD schema of the properties form, describing a paginated list of users and
demonstrating the recursive nature of the syntax of JTD schemas.

MUST NOT

Section 8.3 of [RFC8259]

 {
 "properties": { "confusing": {} },
 "optionalProperties": { "confusing": {} }
 }

 {
 "properties": {
 "users": {
 "elements": {
 "properties": {
 "id": { "type": "string" },
 "name": { "type": "string" },
 "create_time": { "type": "timestamp" }
 },
 "optionalProperties": {
 "delete_time": { "type": "timestamp" }
 }
 }
 },
 "next_page_token": { "type": "string" }
 }
 }

2.2.7. Values

The values form is defined by the values CDDL rule in Figure 1. The semantics of the values
form are described in Section 3.3.7.

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 14

https://www.rfc-editor.org/rfc/rfc8259#section-8.3

As an example of a correct JTD schema of the values form,

is a correct JTD schema, whereas

and

are not correct schemas, as neither

nor

are correct JTD schemas, and the value of the member named values must be a correct JTD
schema.

 { "values": { "type": "uint8" }}

 { "values": true }

 { "values": { "type": "foo" } }

 true

 { "type": "foo" }

2.2.8. Discriminator

The discriminator form is defined by the discriminator CDDL rule in Figure 1. The semantics
of the discriminator form are described in Section 3.3.8. Understanding the semantics of the
discriminator form will likely aid the reader in understanding why this section provides
constraints on the discriminator form beyond those in Figure 1.

To prevent ambiguous or unsatisfiable constraints on the discriminator property of a tagged
union, an additional constraint on schemas of the discriminator form exists. For schemas of the
discriminator form:

Let D be the member of the schema with the name discriminator.
Let M be the member of the schema with the name mapping.

If the schema is correct, then all member values S of M will be schemas of the "properties" form.
For each S:

If S has a member N whose name equals nullable, N's value be the JSON
primitive value true.

•
•

• MUST NOT

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 15

For each member P of S whose name equals properties or optionalProperties, P's value,
which must be an object, contain any members whose name equals D's value.

Thus,

is an incorrect schema, as a member of mapping has a member named nullable whose value is
true. This would suggest that the instance may be null. Yet, the top-level schema lacks such a
nullable set to true, which would suggest that the instance in fact cannot be null. If this were a
correct JTD schema, it would be unclear which piece of information takes precedence.

JTD handles such possible ambiguity by disallowing, at the syntactic level, the possibility of
contradictory specifications of whether an instance described by a schema of the discriminator
form may be null. The schemas in a discriminator mapping cannot have nullable set to true;
only the discriminator itself can use nullable in this way.

It also follows that

and

•
MUST NOT

 {
 "discriminator": "event_type",
 "mapping": {
 "can_the_object_be_null_or_not?": {
 "nullable": true,
 "properties": { "foo": { "type": "string" } }}
 }
 }
 }

 {
 "discriminator": "event_type",
 "mapping": {
 "is_event_type_a_string_or_a_float32?": {
 "properties": { "event_type": { "type": "float32" }}
 }
 }
 }

 {
 "discriminator": "event_type",
 "mapping": {
 "is_event_type_a_string_or_an_optional_float32?": {
 "optionalProperties": { "event_type": { "type": "float32" }}
 }
 }
 }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 16

are incorrect schemas, as event_type is both the value of discriminator and a member name
in one of the mapping member properties or optionalProperties. This is ambiguous, because
ordinarily the discriminator keyword would indicate that event_type is expected to be a
string, but another part of the schema specifies that event_type is expected to be a number.

JTD handles such possible ambiguity by disallowing, at the syntactic level, the possibility of
contradictory specifications of discriminator "tags". Discriminator "tags" cannot be redefined in
other parts of the schema.

By contrast,

is a correct schema, describing a pattern of data common in JSON-based messaging systems.
Section 3.3.8 provides examples of what this schema accepts and rejects.

 {
 "tag": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

2.3. Extending JTD's Syntax
This document does not describe any extension mechanisms for JTD schema validation, which is
described in Section 3. However, schemas are defined to optionally contain a metadata keyword,
whose value is an arbitrary JSON object. Call the members of this object "metadata members".

Users add metadata members to JTD schemas to convey information that is not pertinent to
validation. For example, such metadata members could provide hints to code generators or
trigger some special behavior for a library that generates user interfaces from schemas.

Users expect metadata members to be understood by other parties. As a result, if
consistent validation with other parties is a requirement, users use metadata
members to affect how schema validation, as described in Section 3, works.

MAY

SHOULD NOT
MUST NOT

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 17

Users expect metadata members to be understood by other parties and use metadata
members to affect how schema validation works, if these other parties are somehow known to
support these metadata members. For example, two parties may agree, out of band, that they will
support an extended JTD with a custom metadata member that affects validation.

MAY MAY

3. Semantics
This section describes when an instance is valid against a correct JTD schema and the error
indicators to produce when an instance is invalid.

3.1. Allowing Additional Properties
Users will have different desired behavior with respect to "unspecified" members in an instance.
For example, consider the JTD schema in Figure 2:

Some users may expect that

satisfies the schema in Figure 2. Others may disagree, as b is not one of the properties described
in the schema. In this document, allowing such "unspecified" members, like b in this example,
happens when evaluation is in "allow additional properties" mode.

Evaluation of a schema does not allow additional properties by default, but this can be
overridden by having the schema include a member named additionalProperties, where that
member has a value of true.

More formally, evaluation of a schema S is in "allow additional properties" mode if there exists a
member of S whose name equals additionalProperties and whose value is a boolean true.
Otherwise, evaluation of S is not in "allow additional properties" mode.

See Section 3.3.6 for how allowing unknown properties affects schema evaluation, but briefly, the
schema

rejects

Figure 2: An Illustrative JTD Schema

{ "properties": { "a": { "type": "string" }}}

 {"a": "foo", "b": "bar"}

 { "properties": { "a": { "type": "string" }}}

 { "a": "foo", "b": "bar" }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 18

However, the schema

accepts

Note that additionalProperties does not get "inherited" by subschemas. For example, the JTD
schema

accepts

but rejects

because the additionalProperties at the root level does not affect the behavior of subschemas.

Note from Figure 1 that only schemas of the properties form may have a member named
additionalProperties.

 {
 "additionalProperties": true,
 "properties": { "a": { "type": "string" }}
 }

 { "a": "foo", "b": "bar" }

 {
 "additionalProperties": true,
 "properties": {
 "a": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }

 { "a": { "b": "c" }, "foo": "bar" }

 { "a": { "b": "c", "foo": "bar" }}

3.2. Errors
To facilitate consistent validation error handling, this document specifies a standard error
indicator format. Implementations support producing error indicators in this standard
form.

SHOULD

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 19

The standard error indicator format is a JSON array. The order of the elements of this array is not
specified. The elements of this array are JSON objects with:

A member with the name instancePath, whose value is a JSON string encoding a JSON
Pointer. This JSON Pointer will point to the part of the instance that was rejected.
A member with the name schemaPath, whose value is a JSON string encoding a JSON Pointer.
This JSON Pointer will point to the part of the schema that rejected the instance.

The values for instancePath and schemaPath depend on the form of the schema and are
described in detail in Section 3.3.

•

•

3.3. Forms
This section describes, for each of the eight JTD schema forms, the rules dictating whether an
instance is accepted, as well as the error indicators to produce when an instance is invalid.

The forms a correct schema may take on are formally described in Section 2.

3.3.1. Empty

The empty form is meant to describe instances whose values are unknown, unpredictable, or
otherwise unconstrained by the schema. The syntax of the empty form is described in Section
2.2.1.

If a schema is of the empty form, then it accepts all instances. A schema of the empty form will
never produce any error indicators.

3.3.2. Ref

The ref form is for when a schema is defined in terms of something in the definitions of the
root schema. The ref form enables schemas to be less repetitive and also enables describing
recursive structures. The syntax of the ref form is described in Section 2.2.2.

If a schema is of the ref form, then:

If the schema has a member named nullable whose value is the boolean true, and the
instance is the JSON primitive value null, then the schema accepts the instance. Otherwise:
Let B be the root schema containing the schema or the schema itself if it is a root schema.
Let D be the member of B with the name definitions. By Section 2, D exists.
Let R be the value of the schema member with the name ref.
Let S be the value of the member of D whose name equals R. By Section 2.2.2, S exists and is a
schema.

The schema accepts the instance if and only if S accepts the instance. Otherwise, the error
indicators to return in this case are the union of the error indicators from evaluating S against
the instance.

•

•
•
•
•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 20

For example, the schema

accepts

but rejects

with the error indicator

The schema

accepts

because the schema has a nullable member whose value is true.

Note that nullable being false has no effect in any of the forms described in this document. For
example, the schema

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a"
 }

 123

 null

 [{ "instancePath": "", "schemaPath": "/definitions/a/type" }]

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a",
 "nullable": true
 }

 null

 {
 "definitions": { "a": { "nullable": false, "type": "float32" }},
 "ref": "a",
 "nullable": true
 }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 21

accepts

In other words, it is not the case that putting a false value for nullable will ever override a
nullable member in schemas of the ref form; it is correct, though ineffectual, to have a value of
false for the nullable member in a schema.

 null

3.3.3. Type

The type form is meant to describe instances whose value is a boolean, number, string, or
timestamp . The syntax of the type form is described in Section 2.2.3.

If a schema is of the type form, then:

If the schema has a member named nullable whose value is the boolean true, and the
instance is the JSON primitive value null, then the schema accepts the instance. Otherwise:
Let T be the value of the member with the name type. The following table describes whether
the instance is accepted, as a function of T's value:

[RFC3339]

•

•

If _T_ equals
...

then the instance is accepted if it is ...

boolean equal to true or false

float32 a JSON number

float64 a JSON number

int8 See Table 2

uint8 See Table 2

int16 See Table 2

uint16 See Table 2

int32 See Table 2

uint32 See Table 2

string a JSON string

timestamp a JSON string that follows the standard format described in , as
refined by

Table 1: Accepted Values for Type

[RFC3339]
Section 3.3 of [RFC4287]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 22

https://www.rfc-editor.org/rfc/rfc4287#section-3.3

float32 and float64 are distinguished from each other in their intent. float32 indicates data
intended to be processed as an IEEE 754 single-precision float, whereas float64 indicates data
intended to be processed as an IEEE 754 double-precision float. Tools that generate code from
JTD schemas will likely produce different code for float32 than for float64.

If T starts with int or uint, then the instance is accepted if and only if it is a JSON number
encoding a value with zero fractional part. Depending on the value of T, this encoded number
must additionally fall within a particular range:

Note that

and

and

encode values with zero fractional part, whereas

encodes a number with a non-zero fractional part. Thus, the schema

T Minimum Value (Inclusive) Maximum Value (Inclusive)

int8 -128 127

uint8 0 255

int16 -32,768 32,767

uint16 0 65,535

int32 -2,147,483,648 2,147,483,647

uint32 0 4,294,967,295

Table 2: Ranges for Integer Types

 10

 10.0

 1.0e1

 10.5

 {"type": "int8"}

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 23

accepts

and

and

but rejects

as well as

because "false" is not a number at all.

If the instance is not accepted, then the error indicator for this case shall have an instancePath
pointing to the instance and a schemaPath pointing to the schema member with the name type.

For example, the schema

accepts

but rejects

 10

 10.0

 1.0e1

 10.5

 false

 {"type": "boolean"}

 false

 127

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 24

The schema

accepts

and

but rejects

The schema

accepts

and

but rejects

The schema

 {"type": "float32"}

 10.5

 127

 false

 {"type": "string"}

 "1985-04-12T23:20:50.52Z"

 "foo"

 false

 {"type": "timestamp"}

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 25

accepts

but rejects

and

The schema

accepts

and

but rejects

In all of the examples of rejected instances given in this section, the error indicator to produce is:

 "1985-04-12T23:20:50.52Z"

 "foo"

 false

 {"type": "boolean", "nullable": true}

 null

 false

 127

 [{ "instancePath": "", "schemaPath": "/type" }]

3.3.4. Enum

The enum form is meant to describe instances whose value must be one of a given set of string
values. The syntax of the enum form is described in Section 2.2.4.

If a schema is of the enum form, then:

If the schema has a member named nullable whose value is the boolean true, and the
instance is the JSON primitive value null, then the schema accepts the instance. Otherwise:

•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 26

Let E be the value of the schema member with the name enum. The instance is accepted if
and only if it is equal to one of the elements of E.

If the instance is not accepted, then the error indicator for this case shall have an instancePath
pointing to the instance and a schemaPath pointing to the schema member with the name enum.

For example, the schema

accepts

and

and

but rejects all of

and

and

and

•

 { "enum": ["PENDING", "DONE", "CANCELED"] }

 "PENDING"

 "DONE"

 "CANCELED"

 0

 1

 2

 "UNKNOWN"

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 27

and

with the error indicator

The schema

accepts

and

but rejects

and

with the error indicator

 null

 [{ "instancePath": "", "schemaPath": "/enum" }]

 { "enum": ["PENDING", "DONE", "CANCELED"], "nullable": true }

 "PENDING"

 null

 1

 "UNKNOWN"

 [{ "instancePath": "", "schemaPath": "/enum" }]

3.3.5. Elements

The elements form is meant to describe instances that must be arrays. A further subschema
describes the elements of the array. The syntax of the elements form is described in Section 2.2.5.

If a schema is of the elements form, then:

If the schema has a member named nullable whose value is the boolean true, and the
instance is the JSON primitive value null, then the schema accepts the instance. Otherwise:

•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 28

Let S be the value of the schema member with the name elements. The instance is accepted
if and only if all of the following are true:

The instance is an array. Otherwise, the error indicator for this case shall have an
instancePath pointing to the instance and a schemaPath pointing to the schema member
with the name elements.
If the instance is an array, then every element of the instance must be accepted by S.
Otherwise, the error indicators for this case are the union of all the errors arising from
evaluating S against elements of the instance.

For example, the schema

accepts

and

but rejects

with the error indicator

and rejects

•

◦

◦

 {
 "elements": {
 "type": "float32"
 }
 }

 []

 [1, 2, 3]

 null

 [{ "instancePath": "", "schemaPath": "/elements" }]

 [1, 2, "foo", 3, "bar"]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 29

with the error indicators

The schema

accepts

and

and

but rejects

with the error indicators

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

 {
 "elements": {
 "type": "float32"
 },
 "nullable": true
 }

 null

 []

 [1, 2, 3]

 [1, 2, "foo", 3, "bar"]

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

3.3.6. Properties

The properties form is meant to describe JSON objects being used as a "struct". The syntax of
the properties form is described in Section 2.2.6.

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 30

If a schema is of the properties form, then:

If the schema has a member named nullable whose value is the boolean true, and the
instance is the JSON primitive value null, then the schema accepts the instance. Otherwise,
the instance is accepted if and only if all of the following are true:
The instance is an object.

Otherwise, the error indicator for this case shall have an instancePath pointing to the
instance and a schemaPath pointing to the schema member with the name properties if
such a schema member exists; if such a member doesn't exist, schemaPath shall point to the
schema member with the name optionalProperties.

If the instance is an object, and the schema has a member named properties, then let P be
the value of the schema member named properties. By Section 2.2.6, P must be an object.
For every member name in P, a member of the same name in the instance must exist.

Otherwise, the error indicator for this case shall have an instancePath pointing to the
instance and a schemaPath pointing to the member of P failing the requirement just
described.

If the instance is an object, then let P be the value of the schema member named properties
(if it exists) and O be the value of the schema member named optionalProperties (if it
exists).

For every member I of the instance, find a member with the same name as I's in P or O. By
Section 2.2.6, it is not possible for both P and O to have such a member. If the "discriminator
tag exemption" is in effect on I (see Section 3.3.8), then ignore I. Otherwise:

If no such member in P or O exists and validation is not in "allow additional properties"
mode (see Section 3.1), then the instance is rejected.

The error indicator for this case has an instancePath pointing to I and a schemaPath
pointing to the schema.

If such a member in P or O does exist, then call this member S. If S rejects I's value, then
the instance is rejected.

The error indicators for this case are the union of the error indicators from evaluating S
against I's value.

An instance may have multiple errors arising from the third and fourth bullets in the list above.
In this case, the error indicators are the union of the errors.

•

•

•

•

◦

◦

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 31

For example, the schema

accepts

and

and

and

but rejects

with the error indicator

and rejects

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 }
 }

 { "a": "foo", "b": "bar" }

 { "a": "foo", "b": "bar", "c": "baz" }

 { "a": "foo", "b": "bar", "c": "baz", "d": "quux" }

 { "a": "foo", "b": "bar", "d": "quux" }

 null

 [{ "instancePath": "", "schemaPath": "/properties" }]

 { "b": 3, "c": 3, "e": 3 }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 32

with the error indicators

If instead the schema had additionalProperties: true but was otherwise the same:

and the instance remained the same:

then the error indicators from evaluating the instance against the schema would be:

These are the same errors as before, except the final error (associated with the additional
member named e in the instance) is no longer present. This is because additionalProperties:
true enables "allow additional properties" mode on the schema.

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
 { "instancePath": "/e",
 "schemaPath": "" }
]

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 { "b": 3, "c": 3, "e": 3 }

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 33

Finally, the schema

accepts

but rejects

with the error indicators

 {
 "nullable": true,
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 null

 { "b": 3, "c": 3, "e": 3 }

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

3.3.7. Values

The values form is meant to describe instances that are JSON objects being used as an
associative array. The syntax of the values form is described in Section 2.2.7.

If a schema is of the values form, then:

If the schema has a member named nullable whose value is the boolean true, and the
instance is the JSON primitive value null, then the schema accepts the instance. Otherwise:

•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 34

Let S be the value of the schema member with the name values. The instance is accepted if
and only if all of the following are true:

The instance is an object. Otherwise, the error indicator for this case shall have an
instancePath pointing to the instance and a schemaPath pointing to the schema member
with the name values.
If the instance is an object, then every member value of the instance must be accepted by
S. Otherwise, the error indicators for this case are the union of all the error indicators
arising from evaluating S against member values of the instance.

For example, the schema

accepts

and

but rejects

with the error indicator

and rejects

•

◦

◦

 {
 "values": {
 "type": "float32"
 }
 }

 {}

 {"a": 1, "b": 2}

 null

 [{ "instancePath": "", "schemaPath": "/values" }]

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 35

with the error indicators

The schema

accepts

but rejects

with the error indicators

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

 {
 "nullable": true,
 "values": {
 "type": "float32"
 }
 }

 null

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

3.3.8. Discriminator

The discriminator form is meant to describe JSON objects being used in a fashion similar to a
discriminated union construct in C-like languages. The syntax of the discriminator form is
described in Section 2.2.8.

When a schema is of the "discriminator" form, it validates that:

the instance is an object,
the instance has a particular "tag" property,
this "tag" property's value is a string within a set of valid values, and
the instance satisfies another schema, where this other schema is chosen based on the value
of the "tag" property.

•
•
•
•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 36

The behavior of the discriminator form is more complex than the other keywords. Readers
familiar with CDDL may find the final example in Appendix B helpful in understanding its
behavior. What follows in this section is a description of the discriminator form's behavior, as
well as some examples.

If a schema is of the "discriminator" form, then:

Let D be the schema member with the name discriminator.
Let M be the schema member with the name mapping.
Let I be the instance member whose name equals D's value. I may, for some rejected
instances, not exist.
Let S be the member of M whose name equals I's value. S may, for some rejected instances,
not exist.

If the schema has a member named nullable whose value is the boolean true, and the instance
is the JSON primitive value null, then the schema accepts the instance. Otherwise, the instance is
accepted if and only if all of the following are true:

The instance is an object.

Otherwise, the error indicator for this case shall have an instancePath pointing to the
instance and a schemaPath pointing to D.

If the instance is a JSON object, then I must exist.

Otherwise, the error indicator for this case shall have an instancePath pointing to the
instance and a schemaPath pointing to D.

If the instance is a JSON object and I exists, I's value must be a string.

Otherwise, the error indicator for this case shall have an instancePath pointing to I and a
schemaPath pointing to D.

If the instance is a JSON object and I exists and has a string value, then S must exist.

Otherwise, the error indicator for this case shall have an instancePath pointing to I and a
schemaPath pointing to M.

If the instance is a JSON object, I exists, and S exists, then the instance must satisfy S's value.
By Section 2, S's value must be a schema of the properties form. Apply the "discriminator tag
exemption" afforded in Section 3.3.6 to I when evaluating whether the instance satisfies S's
value.

Otherwise, the error indicators for this case shall be error indicators from evaluating S's
value against the instance, with the "discriminator tag exemption" applied to I.

The list items above are defined in a mutually exclusive way. For any given instance and schema,
exactly one of the list items above will apply.

•
•
•

•

•

•

•

•

•

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 37

For example, the schema

rejects

with the error indicator

(This is the case of the instance not being an object.)

Also rejected is

with the error indicator

(This is the case of I not existing.)

Also rejected is

 {
 "discriminator": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }

 null

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 {}

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 { "version": 1 }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 38

with the error indicator

(This is the case of I existing but not having a string value.)

Also rejected is

with the error indicator

(This is the case of I existing and having a string value but S not existing.)

Also rejected is

with the error indicator

(This is the case of I and S existing but the instance not satisfying S's value.)

Finally, the schema accepts

 [
 {
 "instancePath": "/version",
 "schemaPath": "/discriminator"
 }
]

 { "version": "v3" }

 [
 {
 "instancePath": "/version",
 "schemaPath": "/mapping"
 }
]

 { "version": "v2", "a": 3 }

 [
 {
 "instancePath": "/a",
 "schemaPath": "/mapping/v2/properties/a/type"
 }
]

 { "version": "v2", "a": "foo" }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 39

This instance is accepted even though version is not mentioned by /mapping/v2/properties;
the "discriminator tag exemption" ensures that version is not treated as an additional property
when evaluating the instance against S's value.

By contrast, consider the same schema but with nullable being true. The schema

accepts

To further illustrate the discriminator form with examples, recall the JTD schema in Section 2.2.8,
reproduced here:

 {
 "nullable": true,
 "discriminator": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }

 null

 {
 "discriminator": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 40

This schema accepts

and

and

but rejects

with the error indicator

and rejects

with the error indicator

 { "event_type": "account_deleted", "account_id": "abc-123" }

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID"
 }

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID",
 "upgraded_by": "users/mkhwarizmi"
 }

 {}

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 { "event_type": "some_other_event_type" }

 [
 {
 "instancePath": "/event_type",
 "schemaPath": "/mapping"
 }
]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 41

6. References

6.1. Normative References

and rejects

with the error indicator

and rejects

with the error indicator

 { "event_type": "account_deleted" }

 [{
 "instancePath": "",
 "schemaPath": "/mapping/account_deleted/properties/account_id"
 }]

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID",
 "xxx": "asdf"
 }

 [{
 "instancePath": "/xxx",
 "schemaPath": "/mapping/account_payment_plan_changed"
 }]

4. IANA Considerations
This document has no IANA actions.

5. Security Considerations
Implementations of JTD will necessarily be manipulating JSON data. Therefore, the security
considerations of are all relevant here.

Implementations that evaluate user-inputted schemas implement mechanisms to detect
and abort circular references that might cause a naive implementation to go into an infinite loop.
Without such mechanisms, implementations may be vulnerable to denial-of-service attacks.

[RFC8259]

SHOULD

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 42

[RFC2119]

[RFC3339]

[RFC4287]

[RFC6901]

[RFC8174]

[RFC8259]

[RFC8610]

[JSON-SCHEMA]

[OPENAPI]

[RFC7071]

[RFC7493]

, , ,
, , March 1997,
.

, ,
, , July 2002,

.

, , ,
, December 2005,

.

,
, , , April 2013,

.

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

,

, ,
, June 2019, .

6.2. Informative References

,
, ,

, 17 September 2019,
.

, , October 2018,
.

, ,
, , November 2013,

.

, , , ,
March 2015, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klyne, G. and C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Nottingham, M., Ed. and R. Sayre, Ed. "The Atom Syndication Format" RFC 4287
DOI 10.17487/RFC4287 <https://www.rfc-editor.org/info/
rfc4287>

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed. "JavaScript Object Notation
(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-
editor.org/info/rfc6901>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Birkholz, H., Vigano, C., and C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Wright, A., Andrews, H., Hutton, B., and G. Dennis "JSON Schema: A Media
Type for Describing JSON Documents" Work in Progress Internet-Draft, draft-
handrews-json-schema-02 <https://tools.ietf.org/html/draft-
handrews-json-schema-02>

OpenAPI Initiative "OpenAPI Specification" <https://
spec.openapis.org/oas/v3.0.2>

Borenstein, N. and M. Kucherawy "A Media Type for Reputation Interchange"
RFC 7071 DOI 10.17487/RFC7071 <https://www.rfc-editor.org/
info/rfc7071>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493
<https://www.rfc-editor.org/info/rfc7493>

Appendix A. Rationale for Omitted Features
This appendix is not normative.

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 43

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8610
https://tools.ietf.org/html/draft-handrews-json-schema-02
https://tools.ietf.org/html/draft-handrews-json-schema-02
https://spec.openapis.org/oas/v3.0.2
https://spec.openapis.org/oas/v3.0.2
https://www.rfc-editor.org/info/rfc7071
https://www.rfc-editor.org/info/rfc7071
https://www.rfc-editor.org/info/rfc7493

This section describes possible features that are intentionally left out of JSON Type Definition and
justifies why these features are omitted.

A.1. Support for 64-Bit Numbers
This document does not allow int64 or uint64 as values for the JTD type keyword (see Sections
2.2.3 and 3.3.3). Such hypothetical int64 or uint64 types would behave like int32 or uint32
(respectively) but with the range of values associated with 64-bit instead of 32-bit integers. That
is:

int64 would accept numbers between -(2**63) and (2**63)-1
uint64 would accept numbers between 0 and (2**64)-1

Users of int64 and uint64 would likely expect that the full range of signed or unsigned 64-bit
integers could interoperably be transmitted as JSON without loss of precision. But this
assumption is likely to be incorrect, for the reasons given in .

int64 and uint64 likely would have led users to falsely assume that the full range of 64-bit
integers can be interoperably processed as JSON without loss of precision. To avoid leading users
astray, JTD omits int64 and uint64.

•
•

Section 2.2 of [RFC7493]

A.2. Support for Non-root Definitions
This document disallows the definitions keyword from appearing outside of root schemas (see
Figure 1). Conceivably, this document could have instead allowed definitions to appear on any
schema, even non-root ones. Under this alternative design, refs would resolve to a definition in
the "nearest" (i.e., most nested) schema that both contained the ref and had a suitably named
definitions member.

For instance, under this alternative approach, one could define schemas like the one in Figure 3.

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 44

https://www.rfc-editor.org/rfc/rfc7493#section-2.2

If schemas like that in Figure 3 were permitted, code generation from JTD schemas would be
more difficult, and the generated code would be less useful.

Code generation would be more difficult because it would force code generators to implement a
name-mangling scheme for types generated from definitions. This additional difficulty is not
immense, but it adds complexity to an otherwise relatively trivial task.

Generated code would be less useful because generated, mangled struct names are less pithy
than human-defined struct names. For instance, the user definitions in Figure 3 might have been
generated into types named PropertiesFooUser, PropertiesBarUser, and PropertiesBazUser;
obtuse names like these are less useful to human-written code than names like User.

Furthermore, even though PropertiesFooUser and PropertiesBarUser would be essentially
identical, they would not be interchangeable in many statically typed programming languages. A
code generator could attempt to circumvent this by deduplicating identical definitions, but then
the user might be confused as to why the subtly distinct PropertiesBazUser, defined from a
schema allowing a property named userId (not user_id), was not deduplicated.

Because there seem to be implementation and usability challenges associated with non-root
definitions, and because it would be easier to later amend JTD to permit for non-root definitions
than to later amend JTD to prohibit them, this document does not permit non-root definitions in
JTD schemas.

Figure 3: A Hypothetical Schema Had This Document Permitted Non-root Definitions. This Is Not a
Correct JTD Schema.

{
 "properties": {
 "foo": {
 "definitions": {
 "user": { "properties": { "user_id": {"type": "string" }}}
 },
 "ref": "user"
 },
 "bar": {
 "definitions": {
 "user": { "properties": { "user_id": {"type": "string" }}}
 },
 "ref": "user"
 },
 "baz": {
 "definitions": {
 "user": { "properties": { "userId": {"type": "string" }}}
 },
 "ref": "user"
 }
 }
}

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 45

Appendix B. Comparison with CDDL
This appendix is not normative.

To aid the reader familiar with CDDL, this section illustrates how JTD works by presenting JTD
schemas and CDDL schemas that accept and reject the same instances.

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

 {}

 root = any

 {
 "definitions": {
 "a": { "elements": { "ref": "b" }},
 "b": { "type": "float32" }
 },
 "elements": {
 "ref": "a"
 }
 }

 root = [* a]
 a = [* b]
 b = number

 { "enum": ["PENDING", "DONE", "CANCELED"]}

 root = "PENDING" / "DONE" / "CANCELED"

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 46

The JTD schema

accepts the same instances as the CDDL rule

The JTD schemas:

and

both accept the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

 {"type": "boolean"}

 root = bool

 {"type": "float32"}

 {"type": "float64"}

 root = number

 {"type": "string"}

 root = tstr

 {"type": "timestamp"}

 root = tdate

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 47

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

 { "elements": { "type": "float32" }}

 root = [* number]

 {
 "properties": {
 "a": { "type": "boolean" },
 "b": { "type": "float32" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "timestamp" }
 }
 }

 root = { a: bool, b: number, ? c: tstr, ? d: tdate }

 { "values": { "type": "float32" }}

 root = { * tstr => number }

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 48

Finally, the JTD schema

accepts the same instances as the CDDL rule

 {
 "discriminator": "a",
 "mapping": {
 "foo": {
 "properties": {
 "b": { "type": "float32" }
 }
 },
 "bar": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }

 root = { a: "foo", b: number } / { a: "bar", b: tstr }

Appendix C. Example
This appendix is not normative.

As a demonstration of JTD, in Figure 4 is a JTD schema closely equivalent to the plain-English
definition reputation-object described in :Section 6.2.2 of [RFC7071]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 49

https://www.rfc-editor.org/rfc/rfc7071#section-6.2.2

This schema does not enforce the requirement that sample-size, generated, and expires be
unbounded positive integers. It does not express the limitation that rating, confidence, and
normal-rating should not have more than three decimal places of precision.

The example in Figure 4 can be compared against the equivalent example in
.

Figure 4: A JTD Schema Describing "reputation-object" from Section 6.2.2 of [RFC7071]

{
 "properties": {
 "application": { "type": "string" },
 "reputons": {
 "elements": {
 "additionalProperties": true,
 "properties": {
 "rater": { "type": "string" },
 "assertion": { "type": "string" },
 "rated": { "type": "string" },
 "rating": { "type": "float32" },
 },
 "optionalProperties": {
 "confidence": { "type": "float32" },
 "normal-rating": { "type": "float32" },
 "sample-size": { "type": "float64" },
 "generated": { "type": "float64" },
 "expires": { "type": "float64" }
 }
 }
 }
 }
}

Appendix H of
[RFC8610]

Acknowledgments
 provided lots of useful guidance and feedback on JTD's design and the

structure of this document.

 suggested the addition of nullable and thoroughly vetted this document for
mistakes and opportunities for simplification.

 suggested the current ref model and the addition of enum. suggested
extending type to have more support for numerical types. suggested additional
clarifying examples of how integer types work. suggested many improvements to
help make this document clearer.

Members of the IETF JSON mailing list -- in particular, , ,
, , , and -- provided lots of useful feedback.

OpenAPI's discriminator object inspired the discriminator form.
influenced various parts of JTD's early design.

Carsten Bormann

Evgeny Poberezkin

Tim Bray Anders Rundgren
James Manger

Adrian Farrel

Pete Cordell Phillip Hallam-Baker Nico
Williams John Cowan Rob Sayre Erik Wilde

[OPENAPI] [JSON-SCHEMA]

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 50

https://www.rfc-editor.org/rfc/rfc7071#section-6.2.2
https://www.rfc-editor.org/rfc/rfc8610#appendix-H

Author's Address
Ulysse Carion
Segment.io, Inc
100 California Street

, San Francisco CA 94111
United States of America

 ulysse@segment.com Email:

RFC 8927 JSON Type Definition October 2020

Carion Experimental Page 51

mailto:ulysse@segment.com

	RFC 8927
	JSON Type Definition
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Scope of Experiment

	2. Syntax
	2.1. Root vs. Non-root Schemas
	2.2. Forms
	2.2.1. Empty
	2.2.2. Ref
	2.2.3. Type
	2.2.4. Enum
	2.2.5. Elements
	2.2.6. Properties
	2.2.7. Values
	2.2.8. Discriminator

	2.3. Extending JTD's Syntax

	3. Semantics
	3.1. Allowing Additional Properties
	3.2. Errors
	3.3. Forms
	3.3.1. Empty
	3.3.2. Ref
	3.3.3. Type
	3.3.4. Enum
	3.3.5. Elements
	3.3.6. Properties
	3.3.7. Values
	3.3.8. Discriminator

	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Rationale for Omitted Features
	A.1. Support for 64-Bit Numbers
	A.2. Support for Non-root Definitions
	Appendix B. Comparison with CDDL
	Appendix C. Example
	Acknowledgments
	Author's Address

