
RFC 8908
Captive Portal API

Abstract
This document describes an HTTP API that allows clients to interact with a Captive Portal system.
With this API, clients can discover how to get out of captivity and fetch state about their Captive
Portal sessions.

Stream: Internet Engineering Task Force (IETF)
RFC: 8908
Category: Standards Track
Published: September 2020
ISSN: 2070-1721
Authors: T. Pauly, Ed.

Apple Inc.
D. Thakore, Ed.
CableLabs

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8908

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Pauly & Thakore Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8908
https://www.rfc-editor.org/info/rfc8908
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Workflow

4. API Connection Details

4.1. Server Authentication

5. API State Structure

6. Example Interaction

7. Security Considerations

7.1. Privacy Considerations

8. IANA Considerations

8.1. Captive Portal API JSON Media Type Registration

8.2. Captive Portal API Keys Registry

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction
This document describes a HyperText Transfer Protocol (HTTP) Application Programming
Interface (API) that allows clients to interact with a Captive Portal system. The API defined in this
document has been designed to meet the requirements in the Captive Portal Architecture

. Specifically, the API provides:

The state of captivity (whether or not the client has access to the Internet).
A URI of a user-facing web portal that can be used to get out of captivity.
Authenticated and encrypted connections, using TLS for connections to both the API and
user-facing web portal.

[CAPPORT-ARCH]

•
•
•

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 2

2. Terminology
This document leverages the terminology and components described in and
additionally defines the following terms:

Captive Portal Client
The client that interacts with the Captive Portal API is typically some application running on
the user equipment that is connected to the captive network. This is also referred to as the
"client" in this document.

Captive Portal API Server
The server exposing the APIs defined in this document to the client. This is also referred to as
the "API server" in this document.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[CAPPORT-ARCH]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Workflow
The Captive Portal Architecture defines several categories of interaction between clients and
Captive Portal systems:

Provisioning, in which a client discovers that a network has a captive portal and learns the
URI of the API server.
API Server interaction, in which a client queries the state of captivity and retrieves the
necessary information to get out of captivity
Enforcement, in which the enforcement device in the network blocks disallowed traffic.

This document defines the mechanisms used in the second category. It is assumed that the
location of the Captive Portal API server has been discovered by the client as part of
provisioning. A set of mechanisms for discovering the API server endpoint is defined in

.

1.

2.

3.

[RFC8910]

4. API Connection Details
The API server endpoint be accessed over HTTP using an https URI and
use the default https port. For example, if the Captive Portal API server is hosted at
"example.org", the URI of the API could be "https://example.org/captive-portal/api".

The client assume that the URI of the API server for a given network will stay the
same and rely on the discovery or provisioning process each time it joins the network.

MUST [RFC2818] SHOULD

SHOULD NOT
SHOULD

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 3

As described in , the identity of the client needs to be visible to the
Captive Portal API server in order for the server to correctly reply with the client's portal state. If
the identifier used by the Captive Portal system is the client's set of IP addresses, the system
needs to ensure that the same IP addresses are visible to both the API server and the
enforcement device.

If the API server needs information about the client identity that is not otherwise visible to it, the
URI provided to the client during provisioning be distinct per client. Thus, depending on
how the Captive Portal system is configured, the URI will be unique for each client host and
between sessions for the same client host.

For example, a Captive Portal system that uses per-client session URIs could use "https://
example.org/captive-portal/api/X54PD39JV" as its API URI.

Section 3 of [CAPPORT-ARCH]

SHOULD

4.1. Server Authentication
The purpose of accessing the Captive Portal API over an HTTPS connection is twofold: first, the
encrypted connection protects the integrity and confidentiality of the API exchange from other
parties on the local network; second, it provides the client of the API an opportunity to
authenticate the server that is hosting the API. This authentication allows the client to ensure
that the entity providing the Captive Portal API has a valid certificate for the hostname
provisioned by the network using the mechanisms defined in , by validating that a
DNS-ID on the certificate is equal to the provisioned hostname.

Clients performing revocation checking will need some means of accessing revocation
information for certificates presented by the API server. Online Certificate Status Protocol

 (OCSP) stapling, using the TLS Certificate Status Request extension ,
be used. OCSP stapling allows a client to perform revocation checks without initiating new
connections. To allow for other forms of revocation checking, especially for clients that do not
support OCSP stapling, a captive network permit connections to OCSP responders or
Certificate Revocation Lists (CRLs) that are referenced by certificates provided by the API server.
For more discussion on certificate revocation checks, see . In
addition to connections to OCSP responders and CRLs, a captive network also permit
connections to Network Time Protocol (NTP) servers or other time-sync mechanisms
to allow clients to accurately validate certificates.

Certificates with missing intermediate certificates that rely on clients validating the certificate
chain using the URI specified in the Authority Information Access (AIA) extension

 be used by the Captive Portal API server. If the certificates do require the use of
AIA, the captive network allow client access to the host specified in the URI.

If the client is unable to validate the certificate presented by the API server, it proceed
with any of the behavior for API interaction described in this document. The client will proceed
to interact with the captive network as if the API capabilities were not present. It may still be
possible for the user to access the network if the network redirects a cleartext webpage to a web
portal.

[RFC8910]
[RFC6125]

[RFC6960] [RFC6066] SHOULD

SHOULD

Section 6.5 of BCP 195 [RFC7525]
SHOULD

[RFC5905]

[RFC5280]
SHOULD NOT

MUST

MUST NOT

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 4

https://tools.ietf.org/html/draft-ietf-capport-architecture-08#section-3
https://www.rfc-editor.org/rfc/rfc7525#section-6.5

5. API State Structure
The Captive Portal API data structures are specified in JavaScript Object Notation (JSON)

. Requests and responses for the Captive Portal API use the "application/captive+json"
media type. Clients include this media type as an Accept header in their GET requests,
and servers mark this media type as their Content-Type header in responses.

The following key be included in the top level of the JSON structure returned by the API
server:

The following keys can be optionally included in the top level of the JSON structure returned by
the API server:

[RFC8259]
SHOULD

MUST

MUST

Key Type Description

captive boolean Indicates whether the client is in a state of captivity, i.e, it has not
satisfied the conditions to access the external network. If the client is
captive (i.e., captive=true), it will still be allowed enough access for it to
perform server authentication (Section 4.1).

Table 1

Key Type Description

user-
portal-url

string Provides the URL of a web portal that MUST be accessed over TLS
with which a user can interact.

venue-
info-url

string Provides the URL of a webpage or site that SHOULD be accessed
over TLS on which the operator of the network has information that
it wishes to share with the user (e.g., store info, maps, flight status,
or entertainment).

can-
extend-
session

boolean Indicates that the URL specified as "user-portal-url" allows the user
to extend a session once the client is no longer in a state of captivity.
This provides a hint that a client system can suggest accessing the
portal URL to the user when the session is near its limit in terms of
time or bytes.

seconds-
remaining

number An integer that indicates the number of seconds remaining, after
which the client will be placed into a captive state. The API server

 include this value if the client is not captive (i.e.,
captive=false) and the client session is time-limited and
omit this value for captive clients (i.e., captive=true) or when the
session is not time-limited.

SHOULD
SHOULD

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 5

The valid JSON keys can be extended by adding entries to the Captive Portal API Keys Registry
(Section 8.2). If a client receives a key that it does not recognize, it ignore the key and any
associated values. All keys other than the ones defined in this document as "required" will be
considered optional.

Captive Portal JSON content can contain per-client data that is not appropriate to store in an
intermediary cache. Captive Portal API servers set the Cache-Control header field in any
responses to "private" or a more restrictive value, such as "no-store" .

Client behavior for issuing requests for updated JSON content is implementation specific and can
be based on user interaction or the indications of seconds and bytes remaining in a given
session. If at any point the client does not receive valid JSON content from the API server, either
due to an error or due to receiving no response, the client continue to apply the most
recent valid content it had received or, if no content had been received previously, proceed to
interact with the captive network as if the API capabilities were not present.

Key Type Description

bytes-
remaining

number An integer that indicates the number of bytes remaining, after
which the client will be placed into a captive state. The byte count
represents the sum of the total number of IP packet (layer 3) bytes
sent and received by the client, including IP headers. Captive Portal
systems might not count traffic to whitelisted servers, such as the
API server, but clients cannot rely on such behavior. The API server

 include this value if the client is not captive (i.e.,
captive=false) and the client session is byte-limited and
omit this value for captive clients (i.e., captive=true) or when the
session is not byte-limited.

Table 2

SHOULD
SHOULD

MUST

SHOULD
[RFC7234]

SHOULD

6. Example Interaction
Upon discovering the URI of the API server, a client connected to a captive network will query
the API server to retrieve information about its captive state and conditions to escape captivity.
In this example, the client discovered the URI "https://example.org/captive-portal/api/X54PD39JV"
using one of the mechanisms defined in .

To request the Captive Portal JSON content, a client sends an HTTP GET request:

[RFC8910]

GET /captive-portal/api/X54PD39JV HTTP/1.1
Host: example.org
Accept: application/captive+json

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 6

The server then responds with the JSON content for that client:

Upon receiving this information, the client will use it to direct the user to the web portal (as
specified by the user-portal-url value) to enable access to the external network. Once the user
satisfies the requirements for external network access, the client query the API server
again to verify that it is no longer captive.

When the client requests the Captive Portal JSON content after gaining external network access,
the server responds with updated JSON content:

HTTP/1.1 200 OK
Cache-Control: private
Date: Mon, 02 Mar 2020 05:07:35 GMT
Content-Type: application/captive+json

{
 "captive": true,
 "user-portal-url": "https://example.org/portal.html"
}

SHOULD

HTTP/1.1 200 OK
Cache-Control: private
Date: Mon, 02 Mar 2020 05:08:13 GMT
Content-Type: application/captive+json

{
 "captive": false,
 "user-portal-url": "https://example.org/portal.html",
 "venue-info-url": "https://flight.example.com/entertainment",
 "seconds-remaining": 326,
 "can-extend-session": true
}

7. Security Considerations
One of the goals of this protocol is to improve the security of the communication between client
hosts and Captive Portal systems. Client traffic is protected from passive listeners on the local
network by requiring TLS-encrypted connections between the client and the Captive Portal API
server, as described in Section 4. All communication between the clients and the API server
be encrypted.

In addition to encrypting communications between clients and Captive Portal systems, this
protocol requires a basic level of authentication from the API server, as described in Section 4.1.
Specifically, the API server present a valid certificate on which the client can perform
revocation checks. This allows the client to ensure that the API server has authority for the
hostname that was provisioned by the network using . Note that this validation only

MUST

MUST

[RFC8910]

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 7

confirms that the API server matches what the network's provisioning mechanism (such as DHCP
or IPv6 Router Advertisements) provided; it is not validating the security of those provisioning
mechanisms or the user's trust relationship to the network.

7.1. Privacy Considerations
Information passed between a client and the user-facing web portal may include a user's
personal information, such as a full name and credit card details. Therefore, it is important that
both the user-facing web portal and the API server that points a client to the web portal are only
accessed over encrypted connections.

It is important to note that although communication to the user-facing web portal requires use of
TLS, the authentication only validates that the web portal server matches the name in the URI
provided by the API server. Since this is not a name that a user typed in, the hostname of the
website that would be presented to the user may include "confusable characters", which can
mislead the user. See for a discussion of confusable characters.Section 12.5 of [RFC8264]

8. IANA Considerations
IANA has registered the "application/captive+json" media type (Section 8.1) and created a registry
for fields in that format (Section 8.2).

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

8.1. Captive Portal API JSON Media Type Registration
This document registers the media type for Captive Portal API JSON text, "application/captive
+json".

application

captive+json

N/A

N/A

Encoding considerations are identical to those specified for the
"application/json" media type.

See Section 7

This document specifies format of conforming messages and
the interpretation thereof.

RFC 8908

This media type is intended to be used by servers
presenting the Captive Portal API, and clients connecting to such captive networks.

N/A

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8264#section-12.5

[RFC2119]

[RFC2818]

9. References

9.1. Normative References

, , ,
, , March 1997,
.

, , , , May 2000,
.

Additional Information:

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

N/A

See Authors' Addresses section

COMMON

N/A

CAPPORT IETF WG

IETF

Key:

Type:

Description:

Refrence:

8.2. Captive Portal API Keys Registry
IANA has created a new registry called "Captive Portal API Keys", which reserves JSON keys for
use in Captive Portal API data structures. The initial contents of this registry are provided in
Section 5.

Each entry in the registry contains the following fields:

The JSON key being registered in string format.

The type of the JSON value to be stored, as one of the value types defined in .

A brief description explaining the meaning of the value, how it might be used, and/
or how it should be interpreted by clients.

A reference to a specification that defines the key and explains its usage.

New assignments for the "Captive Portal API Keys" registry will be administered by IANA using
the Specification Required policy . The designated expert is expected to validate the
existence of documentation describing new keys in a permanent, publicly available specification,
such as an Internet-Draft or RFC. The expert is expected to validate that new keys have a clear
meaning and do not create unnecessary confusion or overlap with existing keys. Keys that are
specific to nongeneric use cases, particularly ones that are not specified as part of an IETF
document, are encouraged to use a domain-specific prefix.

[RFC8259]

[RFC8126]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rescorla, E. "HTTP Over TLS" RFC 2818 DOI 10.17487/RFC2818
<https://www.rfc-editor.org/info/rfc2818>

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 9

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2818

[RFC5280]

[RFC5905]

[RFC6066]

[RFC6125]

[RFC6960]

[RFC7234]

[RFC8126]

[RFC8174]

[RFC8259]

[CAPPORT-ARCH]

,

, , , May 2008,
.

,
, ,

, June 2010, .

,
, , , January 2011,

.

,

,
, , March 2011,

.

,

, , , June 2013,
.

,
, , , June 2014,

.

,
, , , , June

2017, .

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

9.2. Informative References

, ,
, , 11 May 2020,

.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch "Network Time Protocol
Version 4: Protocol and Algorithms Specification" RFC 5905 DOI 10.17487/
RFC5905 <https://www.rfc-editor.org/info/rfc5905>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

Saint-Andre, P. and J. Hodges "Representation and Verification of Domain-Based
Application Service Identity within Internet Public Key Infrastructure Using
X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)" RFC
6125 DOI 10.17487/RFC6125 <https://www.rfc-editor.org/info/
rfc6125>

Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams
"X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP" RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/
info/rfc6960>

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed. "Hypertext Transfer
Protocol (HTTP/1.1): Caching" RFC 7234 DOI 10.17487/RFC7234
<https://www.rfc-editor.org/info/rfc7234>

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Larose, K., Dolson, D., and H. Liu "CAPPORT Architecture" Work in
Progress Internet-Draft, draft-ietf-capport-architecture-08
<https://tools.ietf.org/html/draft-ietf-capport-architecture-08>

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 10

https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://tools.ietf.org/html/draft-ietf-capport-architecture-08

[RFC7525]

[RFC8264]

[RFC8910]

,
,

, , , May 2015,
.

,
,

, , October 2017,
.

,
, , , September 2020,

.

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

Saint-Andre, P. and M. Blanchet "PRECIS Framework: Preparation, Enforcement,
and Comparison of Internationalized Strings in Application Protocols" RFC
8264 DOI 10.17487/RFC8264 <https://www.rfc-editor.org/info/
rfc8264>

Kumari, W. and E. Kline "Captive-Portal Identification in DHCP / Router
Advertisement (RA)" RFC 8910 DOI 10.17487/RFC8910 <https://
www.rfc-editor.org/info/rfc8910>

Acknowledgments
This work was started by and . Thanks to everyone in the
CAPPORT Working Group who has given input.

Mark Donnelly Margaret Cullen

Authors' Addresses
Tommy Pauly ()������
Apple Inc.
One Apple Park Way

, Cupertino CA 95014
United States of America

 tpauly@apple.com Email:

Darshak Thakore ()������
CableLabs
858 Coal Creek Circle

, Louisville CO 80027
United States of America

 d.thakore@cablelabs.com Email:

RFC 8908 Captive Portal API September 2020

Pauly & Thakore Standards Track Page 11

https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8910
https://www.rfc-editor.org/info/rfc8910
mailto:tpauly@apple.com
mailto:d.thakore@cablelabs.com

	RFC 8908
	Captive Portal API
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Workflow
	4. API Connection Details
	4.1. Server Authentication

	5. API State Structure
	6. Example Interaction
	7. Security Considerations
	7.1. Privacy Considerations

	8. IANA Considerations
	8.1. Captive Portal API JSON Media Type Registration
	8.2. Captive Portal API Keys Registry

	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Authors' Addresses

