
RFC 8870
Encrypted Key Transport for DTLS and Secure RTP

Abstract
Encrypted Key Transport (EKT) is an extension to DTLS (Datagram Transport Layer Security) and
the Secure Real-time Transport Protocol (SRTP) that provides for the secure transport of SRTP
master keys, rollover counters, and other information within SRTP. This facility enables SRTP for
decentralized conferences by distributing a common key to all of the conference endpoints.

Stream: Internet Engineering Task Force (IETF)
RFC: 8870
Category: Standards Track
Published: October 2020
ISSN: 2070-1721
Authors:

 C. Jennings
Cisco Systems

J. Mattsson
Ericsson AB

D. McGrew
Cisco Systems

D. Wing
Citrix Systems, Inc.

F. Andreasen
Cisco Systems

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8870

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Jennings, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8870
https://www.rfc-editor.org/info/rfc8870
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Overview

3. Conventions Used in This Document

4. Encrypted Key Transport

4.1. EKTField Formats

4.2. SPIs and EKT Parameter Sets

4.3. Packet Processing and State Machine

4.3.1. Outbound Processing

4.3.2. Inbound Processing

4.4. Ciphers

4.4.1. AES Key Wrap

4.4.2. Defining New EKT Ciphers

4.5. Synchronizing Operation

4.6. Timing and Reliability Considerations

5. Use of EKT with DTLS-SRTP

5.1. DTLS-SRTP Recap

5.2. SRTP EKT Key Transport Extensions to DTLS-SRTP

5.2.1. Negotiating an EKTCipher

5.2.2. Establishing an EKT Key

5.3. Offer/Answer Considerations

5.4. Sending the DTLS EKTKey Reliably

6. Security Considerations

7. IANA Considerations

7.1. EKT Message Types

7.2. EKT Ciphers

7.3. TLS Extensions

7.4. TLS Handshake Type

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 2

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction
The Real-time Transport Protocol (RTP) is designed to allow decentralized groups with minimal
control to establish sessions, such as for multimedia conferences. Unfortunately, Secure RTP
(SRTP) cannot be used in many minimal-control scenarios, because it requires that
synchronization source (SSRC) values and other data be coordinated among all of the
participants in a session. For example, if a participant joins a session that is already in progress,
that participant needs to be informed of the SRTP keys along with the SSRC, rollover counter
(ROC), and other details of the other SRTP sources.

The inability of SRTP to work in the absence of central control was well understood during the
design of the protocol; the omission was considered less important than optimizations such as
bandwidth conservation. Additionally, in many situations, SRTP is used in conjunction with a
signaling system that can provide the central control needed by SRTP. However, there are several
cases in which conventional signaling systems cannot easily provide all of the coordination
required.

This document defines Encrypted Key Transport (EKT) for SRTP and reduces the amount of
external signaling control that is needed in an SRTP session with multiple receivers. EKT securely
distributes the SRTP master key and other information for each SRTP source. With this method,
SRTP entities are free to choose SSRC values as they see fit and to start up new SRTP sources with
new SRTP master keys within a session without coordinating with other entities via external
signaling or other external means.

EKT extends DTLS and SRTP to enable a common key encryption key (called an "EKTKey") to be
distributed to all endpoints, so that each endpoint can securely send its SRTP master key and
current SRTP ROC to the other participants in the session. This data furnishes the information
needed by the receiver to instantiate an SRTP receiver context.

EKT can be used in conferences where the central Media Distributor or conference bridge cannot
decrypt the media, such as the type defined in . It can also be used for large-scale
conferences where the conference bridge or Media Distributor can decrypt all the media but
wishes to encrypt the media it is sending just once and then send the same encrypted media to a
large number of participants. This reduces the amount of CPU time needed for encryption and
can be used for some optimization to media sending that use source-specific multicast.

[RFC3711]

[RFC8871]

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 3

EKT does not control the manner in which the SSRC is generated. It is only concerned with
distributing the security parameters that an endpoint needs to associate with a given SSRC in
order to decrypt SRTP packets from that sender.

EKT is not intended to replace external key establishment mechanisms. Instead, it is used in
conjunction with those methods, and it relieves those methods of the burden of delivering the
context for each SRTP source to every SRTP participant. This document defines how EKT works
with the DTLS-SRTP approach to key establishment, by using keys derived from the DTLS-SRTP
handshake to encipher the EKTKey in addition to the SRTP media.

2. Overview
This specification defines a way for the server in a DTLS-SRTP negotiation (see Section 5) to
provide an EKTKey to the client during the DTLS handshake. The EKTKey thus obtained can be
used to encrypt the SRTP master key that is used to encrypt the media sent by the endpoint. This
specification also defines a way to send the encrypted SRTP master key (with the EKTKey) along
with the SRTP packet (see Section 4). Endpoints that receive this and know the EKTKey can use
the EKTKey to decrypt the SRTP master key, which can then be used to decrypt the SRTP packet.

One way to use this is described in the architecture defined by . Each participant in the
conference forms a DTLS-SRTP connection to a common Key Distributor that distributes the same
EKTKey to all the endpoints. Then, each endpoint picks its own SRTP master key for the media
they send. When sending media, the endpoint also includes the SRTP master key encrypted with
the EKTKey in the SRTP packet. This allows all the endpoints to decrypt the media.

[RFC8871]

3. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

4. Encrypted Key Transport
EKT defines a new method of providing SRTP master keys to an endpoint. In order to convey the
ciphertext corresponding to the SRTP master key, and other additional information, an additional
field, called the "EKTField", is added to the SRTP packets. The EKTField appears at the end of the
SRTP packet. It appears after the optional authentication tag, if one is present; otherwise, the
EKTField appears after the ciphertext portion of the packet.

EKT be used in conjunction with SRTP's MKI (Master Key Identifier) or with SRTP's
<From, To> , as those SRTP features duplicate some of the functions of EKT. Senders

 include the MKI when using EKT. Receivers simply ignore any MKI field
received if EKT is in use.

MUST NOT
[RFC3711]

MUST NOT SHOULD

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 4

This document defines the use of EKT with SRTP. Its use with the Secure Real-time Transport
Control Protocol (SRTCP) would be similar, but that topic is left for a future specification. SRTP is
preferred for transmitting keying material because (1) it shares fate with the transmitted media,
(2) SRTP rekeying can occur without concern for RTCP transmission limits, and (3) it avoids the
need for SRTCP compound packets with RTP translators and mixers.

4.1. EKTField Formats
The EKTField uses the formats defined in Figures 1 and 2 for the FullEKTField and
ShortEKTField. The EKTField appended to an SRTP packet can be referred to as an "EKT tag".

Figure 3 shows the syntax of the EKTField, expressed in ABNF . The EKTField is added
to the end of an SRTP packet. The EKTPlaintext is the concatenation of SRTPMasterKeyLength,
SRTPMasterKey, SSRC, and ROC, in that order. The EKTCiphertext is computed by encrypting the
EKTPlaintext using the EKTKey. Future extensions to the EKTField conform to the syntax of
the ExtensionEKTField.

Figure 1: FullEKTField Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
: :
: EKT Ciphertext :
: :
+-+
| Security Parameter Index | Epoch |
+-+
| Length |0 0 0 0 0 0 1 0|
+-+

Figure 2: ShortEKTField Format

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|0 0 0 0 0 0 0 0|
+-+-+-+-+-+-+-+-+

[RFC5234]

MUST

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 5

These fields and data elements are defined as follows:

EKTPlaintext:
This is the data that is input to the EKT encryption operation. This data never appears on the
wire; it is used only in computations internal to EKT. This is the concatenation of the SRTP
master key and its length, the SSRC, and the ROC.

EKTCiphertext:
This is the data that is output from the EKT encryption operation (see Section 4.4). This field is
included in SRTP packets when EKT is in use. The length of the EKTCiphertext can be larger
than the length of the EKTPlaintext that was encrypted.

SRTPMasterKey:
On the sender side, this is the SRTP master key associated with the indicated SSRC.

SRTPMasterKeyLength:
This is the length of the SRTPMasterKey in bytes. This depends on the cipher suite negotiated
for SRTP using Session Description Protocol (SDP) Offer/Answer for the SRTP.

Figure 3: EKTField Syntax

BYTE = %x00-FF

EKTMsgTypeFull = %x02
EKTMsgTypeShort = %x00
EKTMsgTypeExtension = %x03-FF ; Message type %x01 is reserved, due to
 ; usage by legacy implementations.

EKTMsgLength = 2BYTE;

SRTPMasterKeyLength = BYTE
SRTPMasterKey = 1*242BYTE
SSRC = 4BYTE; SSRC from RTP
ROC = 4BYTE ; ROC from SRTP FOR THE GIVEN SSRC

EKTPlaintext = SRTPMasterKeyLength SRTPMasterKey SSRC ROC

EKTCiphertext = 1*251BYTE ; EKTEncrypt(EKTKey, EKTPlaintext)
Epoch = 2BYTE
SPI = 2BYTE

FullEKTField = EKTCiphertext SPI Epoch EKTMsgLength EKTMsgTypeFull

ShortEKTField = EKTMsgTypeShort

ExtensionData = 1*1024BYTE
ExtensionEKTField = ExtensionData EKTMsgLength EKTMsgTypeExtension

EKTField = FullEKTField / ShortEKTField / ExtensionEKTField

[RFC3264]

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 6

SSRC:
On the sender side, this is the SSRC for this SRTP source. The length of this field is 32 bits. The
SSRC value in the EKT tag be the same as the one in the header of the SRTP packet to
which the tag is appended.

Rollover Counter (ROC):
On the sender side, this is set to the current value of the SRTP ROC in the SRTP context
associated with the SSRC in the SRTP packet. The length of this field is 32 bits.

Security Parameter Index (SPI):
This field indicates the appropriate EKTKey and other parameters for the receiver to use
when processing the packet, within a given conference. The length of this field is 16 bits,
representing a two-byte integer in network byte order. The parameters identified by this field
are as follows:

The EKT cipher used to process the packet.
The EKTKey used to process the packet.
The SRTP master salt associated with any master key encrypted with this EKT Key. The
master salt is communicated separately, via signaling, typically along with the EKTKey.
(Recall that the SRTP master salt is used in the formation of Initialization Vectors (IVs) /
nonces.)

Epoch:
This field indicates how many SRTP keys have been sent for this SSRC under the current
EKTKey, prior to the current key, as a two‑byte integer in network byte order. It starts at zero
at the beginning of a session and resets to zero whenever the EKTKey is changed (i.e., when a
new SPI appears). The epoch for an SSRC increments by one every time the sender transmits a
new key. The recipient of a FullEKTField reject any future FullEKTField for this SPI and
SSRC that has an epoch value equal to or lower than an epoch already seen.

Together, these data elements are called an "EKT parameter set". To avoid ambiguity, each
distinct EKT parameter set that is used be associated with a distinct SPI value.

EKTMsgLength:
All EKT message types other than the ShortEKTField have a length as second from the last
element. This is the length in octets (in network byte order) of either the FullEKTField/
ExtensionEKTField including this length field and the following EKT Message Type.

Message Type:
The last byte is used to indicate the type of the EKTField. This be 2 for the FullEKTField
format and 0 for the ShortEKTField format. If a received EKT tag has an unknown message
type, then the receiver discard the whole EKT tag.

MUST

•
•
•

MUST

MUST

MUST

MUST

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 7

4.2. SPIs and EKT Parameter Sets
The SPI identifies the parameters for how the EKT tag should be processed:

The EKTKey and EKT cipher used to process the packet.
The SRTP master salt associated with any master key encrypted with this EKT Key. The
master salt is communicated separately, via signaling, typically along with the EKTKey.

Together, these data elements are called an "EKT parameter set". To avoid ambiguity, each
distinct EKT parameter set that is used be associated with a distinct SPI value. The
association of a given parameter set with a given SPI value is configured by some other protocol,
e.g., the DTLS-SRTP extension defined in Section 5.

•
•

MUST

4.3. Packet Processing and State Machine
At any given time, each SRTP source has associated with it a single EKT parameter set. This
parameter set is used to process all outbound packets and is called the "outbound parameter set"
for that SSRC. There may be other EKT parameter sets that are used by other SRTP sources in the
same session, including other SRTP sources on the same endpoint (e.g., one endpoint with voice
and video might have two EKT parameter sets, or there might be multiple video sources on an
endpoint, each with their own EKT parameter set). All of the received EKT parameter sets

 be stored by all of the participants in an SRTP session, for use in processing inbound
SRTP traffic. If a participant deletes an EKT parameter set (e.g., because of space limitations),
then it will be unable to process Full EKT Tags containing updated media keys and thus will be
unable to receive media from a participant that has changed its media key.

Either the FullEKTField or ShortEKTField is appended at the tail end of all SRTP packets. The
decision regarding which parameter to send and when is specified in Section 4.6.

SHOULD

4.3.1. Outbound Processing

See Section 4.6, which describes when to send an SRTP packet with a FullEKTField. If a
FullEKTField is not being sent, then a ShortEKTField is sent so the receiver can correctly
determine how to process the packet.

When an SRTP packet is sent with a FullEKTField, the EKTField for that packet is created per
either the steps below or an equivalent set of steps.

The Security Parameter Index (SPI) field is set to the value of the SPI that is associated with
the outbound parameter set.
The EKTPlaintext field is computed from the SRTP master key, SSRC, and ROC fields, as
shown in Section 4.1. The ROC, SRTP master key, and SSRC used in EKT processing be
the same as the one used in SRTP processing.
The EKTCiphertext field is set to the ciphertext created by encrypting the EKTPlaintext with
the EKTCipher using the EKTKey as the encryption key. The encryption process is detailed in
Section 4.4.

1.

2.
MUST

3.

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 8

Then, the FullEKTField is formed using the EKTCiphertext and the SPI associated with the
EKTKey used above. Also appended are the Length and Message Type using the FullEKTField
format.

Note: The value of the EKTCiphertext field is identical in successive packets
protected by the same EKTKey and SRTP master key. This value be cached by
an SRTP sender to minimize computational effort.

The computed value of the FullEKTField is appended to the end of the SRTP packet, after the
encrypted payload.

When a packet is sent with the ShortEKTField, the ShortEKTField is simply appended to the
packet.

Outbound packets continue to use the old SRTP master key for 250 ms after sending any
new key in a FullEKTField value. This gives all the receivers in the system time to get the new key
before they start receiving media encrypted with the new key. (The specific value of 250 ms is
chosen to represent a reasonable upper bound on the amount of latency and jitter that is
tolerable in a real-time context.)

4.

MAY

SHOULD

4.3.2. Inbound Processing

When receiving a packet on an RTP stream, the following steps are applied for each received
SRTP packet.

The final byte is checked to determine which EKT format is in use. When an SRTP packet
contains a ShortEKTField, the ShortEKTField is removed from the packet and then normal
SRTP processing occurs. If the packet contains a FullEKTField, then processing continues as
described below. The reason for using the last byte of the packet to indicate the type is that
the length of the SRTP part is not known until the decryption has occurred. At this point in
the processing, there is no easy way to know where the EKTField would start. However, the
whole UDP packet has been received, so instead of starting at the front of the packet, the
parsing works backwards at the end of the packet, and thus the type is placed at the very end
of the packet.
The Security Parameter Index (SPI) field is used to find the right EKT parameter set to be
used for processing the packet. If there is no matching SPI, then the verification function

 return an indication of authentication failure, and the steps described below are not
performed. The EKT parameter set contains the EKTKey, the EKTCipher, and the SRTP master
salt.
The EKTCiphertext is authenticated and decrypted, as described in Section 4.4, using the
EKTKey and EKTCipher found in the previous step. If the EKT decryption operation returns
an authentication failure, then EKT processing be aborted. The receiver
discard the whole UDP packet.
The resulting EKTPlaintext is parsed as described in Section 4.1, to recover the SRTP master
key, SSRC, and ROC fields. The SRTP master salt that is associated with the EKTKey is also
retrieved. If the value of the srtp_master_salt (see Section 5.2.2) sent as part of the EKTkey is

1.

2.

MUST

3.

MUST SHOULD

4.

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 9

longer than needed by SRTP, then it is truncated by taking the first N bytes from the
srtp_master_salt field.
If the SSRC in the EKTPlaintext does not match the SSRC of the SRTP packet received, then
this FullEKTField be discarded and the subsequent steps in this list skipped. After
stripping the FullEKTField, the remainder of the SRTP packet be processed as normal.
The SRTP master key, ROC, and SRTP master salt from the previous steps are saved in a map
indexed by the SSRC found in the EKTPlaintext and can be used for any future crypto
operations on the inbound packets with that SSRC.

Unless the transform specifies other acceptable key lengths, the length of the SRTP master
key be the same as the master key length for the SRTP transform in use. If this is not
the case, then the receiver abort EKT processing and discard the whole UDP
packet.
If the length of the SRTP master key is less than the master key length for the SRTP
transform in use and the transform specifies that this length is acceptable, then the SRTP
master key value is used to replace the first bytes in the existing master key. The other
bytes remain the same as in the old key. For example, the double GCM transform

 allows replacement of the first ("end-to-end") half of the master key.

At this point, EKT processing has successfully completed, and the normal SRTP processing
takes place.

The value of the EKTCiphertext field is identical in successive packets protected by the same EKT
parameter set and the same SRTP master key, and ROC. SRTP senders and receivers cache an
EKTCiphertext value to optimize processing in cases where the master key hasn't changed.
Instead of encrypting and decrypting, senders can simply copy the precomputed value and
receivers can compare a received EKTCiphertext to the known value.

Section 4.3.1 recommends that SRTP senders continue using an old key for some time after
sending a new key in an EKT tag. Receivers that wish to avoid packet loss due to decryption
failures perform trial decryption with both the old key and the new key, keeping the result
of whichever decryption succeeds. Note that this approach is only compatible with SRTP
transforms that include integrity protection.

When receiving a new EKTKey, implementations need to use the ekt_ttl field (see Section 5.2.2) to
create a time after which this key cannot be used, and they also need to create a counter that
keeps track of how many times the key has been used to encrypt data, to ensure that it does not
exceed the T value for that cipher (see Section 4.4). If either of these limits is exceeded, the key
can no longer be used for encryption. At this point, implementations need to either use call
signaling to renegotiate a new session or terminate the existing session. Terminating the session
is a reasonable implementation choice because these limits should not be exceeded, except
under an attack or error condition.

5.
MUST

MAY
6.

◦
MUST

MUST SHOULD

◦

[RFC8723]

7.

MAY

MAY

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 10

4.4. Ciphers
EKT uses an authenticated cipher to encrypt and authenticate the EKTPlaintext. This
specification defines the interface to the cipher, in order to abstract the interface away from the
details of that function. This specification also defines the default cipher that is used in EKT. The
default cipher described in Section 4.4.1 be implemented, but another cipher that conforms
to this interface be used. The cipher used for a given EKTCiphertext value is negotiated
using the supported_ekt_ciphers extension (see Section 5.2) and indicated with the SPI value in
the FullEKTField.

An EKTCipher consists of an encryption function and a decryption function. The encryption
function E(K, P) takes the following inputs:

a secret key K with a length of L bytes, and
a plaintext value P with a length of M bytes.

The encryption function returns a ciphertext value C whose length is N bytes, where N may be
larger than M. The decryption function D(K, C) takes the following inputs:

a secret key K with a length of L bytes, and
a ciphertext value C with a length of N bytes.

The decryption function returns a plaintext value P that is M bytes long, or it returns an
indication that the decryption operation failed because the ciphertext was invalid (i.e., it was not
generated by the encryption of plaintext with the key K).

These functions have the property that D(K, E(K, P)) = P for all values of K and P. Each cipher also
has a limit T on the number of times that it can be used with any fixed key value. The EKTKey

 be used for encryption more than T times. Note that if the same FullEKTField is
retransmitted three times, that only counts as one encryption.

Security requirements for EKT ciphers are discussed in Section 6.

MUST
MAY

•
•

•
•

MUST NOT

4.4.1. AES Key Wrap

The default EKT Cipher is the Advanced Encryption Standard (AES) Key Wrap with Padding
algorithm . It requires a plaintext length M that is at least one octet, and it returns a
ciphertext with a length of N = M + (M mod 8) + 8 octets. It can be used with key sizes of L = 16,
and L = 32 octets, and its use with those key sizes is indicated as AESKW128, or AESKW256,
respectively. The key size determines the length of the AES key used by the Key Wrap algorithm.
With this cipher, T=248.

[RFC5649]

Cipher L T

AESKW128 16 248

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 11

As AES-128 is the mandatory-to-implement transform in SRTP, AESKW128 be implemented
for EKT. AESKW256 be implemented.

Cipher L T

AESKW256 32 248

Table 1: EKT Ciphers

MUST
MAY

4.4.2. Defining New EKT Ciphers

Other specifications may extend this document by defining other EKTCiphers, as described in
Section 7. This section defines how those ciphers interact with this specification.

An EKTCipher determines how the EKTCiphertext field is written and how it is processed when it
is read. This field is opaque to the other aspects of EKT processing. EKT ciphers are free to use
this field in any way, but they use other EKT or SRTP fields as an input. The values
of the parameters L and T be defined by each EKTCipher. The cipher provide
integrity protection.

SHOULD NOT
MUST MUST

4.5. Synchronizing Operation
If a source has its EKTKey changed by key management, it also change its SRTP master key,
which will cause it to send out a new FullEKTField and eventually begin encrypting with it, as
described in Section 4.3.1. This ensures that if key management thought the EKTKey needs
changing (due to a participant leaving or joining) and communicated that to a source, the source
will also change its SRTP master key, so that traffic can be decrypted only by those who know the
current EKTKey.

MUST

4.6. Timing and Reliability Considerations
A system using EKT learns the SRTP master keys distributed with the FullEKTField sent with the
SRTP, rather than with call signaling. A receiver can immediately decrypt an SRTP packet,
provided the SRTP packet contains a FullEKTField.

This section describes how to reliably and expediently deliver new SRTP master keys to
receivers.

There are three cases to consider. In the first case, a new sender joins a session and needs to
communicate its SRTP master key to all the receivers. In the second case, a sender changes its
SRTP master key, which needs to be communicated to all the receivers. In the third case, a new
receiver joins a session already in progress and needs to know the sender's SRTP master key.

The three cases are as follows:

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 12

New sender:
A new sender send a packet containing the FullEKTField as soon as possible, always
before or coincident with sending its initial SRTP packet. To accommodate packet loss, it is

 that the FullEKTField be transmitted in three consecutive packets. If the
sender does not send a FullEKTField in its initial packets and receivers have not otherwise
been provisioned with a decryption key, then decryption will fail and SRTP packets will be
dropped until the receiver receives a FullEKTField from the sender.

Rekey:
By sending an EKT tag over SRTP, the rekeying event shares fate with the SRTP packets
protected with that new SRTP master key. To accommodate packet loss, it is
that three consecutive packets containing the FullEKTField be transmitted.

New receiver:
When a new receiver joins a session, it does not need to communicate its sending SRTP
master key (because it is a receiver). Also, when a new receiver joins a session, the sender is
generally unaware of the receiver joining the session; thus, senders periodically
transmit the FullEKTField. That interval depends on how frequently new receivers join the
session, the acceptable delay before those receivers can start processing SRTP packets, and the
acceptable overhead of sending the FullEKTField. If sending audio and video, the

 frequency is the same as the rate of intra-coded video frames. If only sending
audio, the frequency is every 100 ms.

In general, sending EKT tags less frequently will consume less bandwidth but will increase the
time it takes for a join or rekey to take effect. Applications should schedule the sending of EKT
tags in a way that makes sense for their bandwidth and latency requirements.

SHOULD

RECOMMENDED

RECOMMENDED

SHOULD

RECOMMENDED
RECOMMENDED

5. Use of EKT with DTLS-SRTP
This document defines an extension to DTLS-SRTP called "SRTP EKTKey Transport", which
enables secure transport of EKT keying material from the DTLS-SRTP peer in the server role to
the client. This allows those peers to process EKT keying material in SRTP and retrieve the
embedded SRTP keying material. This combination of protocols is valuable because it combines
the advantages of DTLS, which has strong authentication of the endpoint and flexibility, along
with allowing secure multi-party RTP with loose coordination and efficient communication of
per-source keys.

In cases where the DTLS termination point is more trusted than the media relay, the protection
that DTLS affords to EKT keying material can allow EKT keys to be tunneled through an
untrusted relay such as a centralized conference bridge. For more details, see .[RFC8871]

5.1. DTLS-SRTP Recap
DTLS-SRTP uses an extended DTLS exchange between two peers to exchange keying
material, algorithms, and parameters for SRTP. The SRTP flow operates over the same transport
as the DTLS-SRTP exchange (i.e., the same 5-tuple). DTLS-SRTP combines the performance and

[RFC5764]

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 13

encryption flexibility benefits of SRTP with the flexibility and convenience of DTLS-integrated
key and association management. DTLS-SRTP can be viewed in two equivalent ways: as a new
key management method for SRTP and as a new RTP-specific data format for DTLS.

5.2. SRTP EKT Key Transport Extensions to DTLS-SRTP
This document defines a new TLS negotiated extension called "supported_ekt_ciphers" and a new
TLS handshake message type called "ekt_key". The extension negotiates the cipher to be used in
encrypting and decrypting EKTCiphertext values, and the handshake message carries the
corresponding key.

Figure 4 shows a message flow between a DTLS 1.3 client and server using EKT configured using
the DTLS extensions described in this section. (The initial cookie exchange and other normal
DTLS messages are omitted.) To be clear, EKT can be used with versions of DTLS prior to 1.3. The
only difference is that in pre-1.3 TLS, stacks will not have built-in support for generating and
processing ACK messages.

Figure 4

Client Server

ClientHello
 + use_srtp
 + supported_ekt_ciphers
 -------->

 ServerHello
 {EncryptedExtensions}
 + use_srtp
 + supported_ekt_ciphers
 {... Finished}
 <--------

{... Finished} -------->

 [ACK]
 <-------- [EKTKey]

[ACK] -------->

|SRTP packets| <-------> |SRTP packets|
+ <EKT tags> + <EKT tags>

{} Messages protected using DTLS handshake keys

[] Messages protected using DTLS application traffic keys

<> Messages protected using the EKTKey and EKT cipher

|| Messages protected using the SRTP master key sent in
 a Full EKT Tag

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 14

In the context of a multi-party SRTP session in which each endpoint performs a DTLS handshake
as a client with a central DTLS server, the extensions defined in this document allow the DTLS
server to set a common EKTKey for all participants. Each endpoint can then use EKT tags
encrypted with that common key to inform other endpoints of the keys it uses to protect SRTP
packets. This avoids the need for many individual DTLS handshakes among the endpoints, at the
cost of preventing endpoints from directly authenticating one another.

Client A Server Client B

 <----DTLS Handshake---->
 <--------EKTKey---------
 <----DTLS Handshake---->
 ---------EKTKey-------->

 -------------SRTP Packet + EKT Tag------------->
 <------------SRTP Packet + EKT Tag--------------

5.2.1. Negotiating an EKTCipher

To indicate its support for EKT, a DTLS-SRTP client includes in its ClientHello an extension of type
supported_ekt_ciphers listing the ciphers used for EKT by the client, in preference order, with the
most preferred version first. If the server agrees to use EKT, then it includes a
supported_ekt_ciphers extension in its ServerHello containing a cipher selected from among
those advertised by the client.

The extension_data field of this extension contains an "EKTCipher" value, encoded using the
syntax defined in :[RFC8446]

 enum {
 reserved(0),
 aeskw_128(1),
 aeskw_256(2),
 } EKTCipherType;

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 EKTCipherType supported_ciphers<1..255>;

 case server_hello:
 EKTCipherType selected_cipher;
 };
 } EKTCipher;

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 15

5.2.2. Establishing an EKT Key

Once a client and server have concluded a handshake that negotiated an EKTCipher, the server
 provide to the client a key to be used when encrypting and decrypting EKTCiphertext

values. EKTKeys are sent in encrypted handshake records, using handshake type ekt_key(26). The
body of the handshake message contains an EKTKey structure as follows:

The contents of the fields in this message are as follows:

ekt_key_value
The EKTKey that the recipient should use when generating EKTCiphertext values

srtp_master_salt
The SRTP master salt to be used with any master key encrypted with this EKT Key

ekt_spi
The SPI value to be used to reference this EKTKey and SRTP master salt in EKT tags (along
with the EKT cipher negotiated in the handshake)

ekt_ttl
The maximum amount of time, in seconds, that this EKTKey can be used. The ekt_key_value in
this message be used for encrypting or decrypting information after the TTL
expires.

If the server did not provide a supported_ekt_ciphers extension in its ServerHello, then EKTKey
messages be sent by the client or the server.

When an EKTKey is received and processed successfully, the recipient respond with an
ACK message as described in . The EKTKey message and ACK be
retransmitted following the rules of the negotiated version of DTLS.

EKT be used with versions of DTLS prior to 1.3. In such cases, to provide reliability, the ACK
message is still used. Thus, DTLS implementations supporting EKT with pre-1.3 versions of DTLS
will need to have explicit affordances for sending the ACK message in response to an EKTKey
message and for verifying that an ACK message was received. The retransmission rules for both
sides are otherwise defined by the negotiated version of DTLS.

If an EKTKey message is received that cannot be processed, then the recipient respond
with an appropriate DTLS alert.

MUST

struct {
 opaque ekt_key_value<1..256>;
 opaque srtp_master_salt<1..256>;
 uint16 ekt_spi;
 uint24 ekt_ttl;
} EKTKey;

MUST NOT

MUST NOT

MUST
Section 7 of [TLS-DTLS13] MUST

MAY

MUST

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 16

https://tools.ietf.org/html/draft-ietf-tls-dtls13-38#section-7

5.3. Offer/Answer Considerations
When using EKT with DTLS-SRTP, the negotiation to use EKT is done at the DTLS handshake level
and does not change the SDP Offer /Answer messaging .[RFC3264]

5.4. Sending the DTLS EKTKey Reliably
The DTLS EKTKey message is sent using the retransmissions specified in

. Retransmission is finished with an ACK message, or an alert is received.
Section 4.2.4 of DTLS

[RFC6347]

6. Security Considerations
EKT inherits the security properties of the key management protocol that is used to establish the
EKTKey, e.g., the DTLS-SRTP extension defined in this document.

With EKT, each SRTP sender and receiver generate distinct SRTP master keys. This property
avoids any security concerns over the reuse of keys, by empowering the SRTP layer to create keys
on demand. Note that the inputs of EKT are the same as for SRTP with key-sharing: a single key is
provided to protect an entire SRTP session. However, EKT remains secure even when SSRC
values collide.

SRTP master keys be randomly generated, and offers some guidance about
random number generation. SRTP master keys be reused for any other purpose, and
SRTP master keys be derived from other SRTP master keys.

The EKT Cipher includes its own authentication/integrity check. For an attacker to successfully
forge a FullEKTField, it would need to defeat the authentication mechanisms of the EKT Cipher
authentication mechanism.

The presence of the SSRC in the EKTPlaintext ensures that an attacker cannot substitute an
EKTCiphertext from one SRTP stream into another SRTP stream. This mitigates the impact of cut-
and-paste attacks that arise due to the lack of a cryptographic binding between the EKT tag and
the rest of the SRTP packet. SRTP tags can only be cut-and-pasted within the stream of packets
sent by a given RTP endpoint; an attacker cannot "cross the streams" and use an EKT tag from
one SSRC to reset the key for another SSRC. The Epoch field in the FullEKTField also prevents an
attacker from rolling back to a previous key.

An attacker could send packets containing a FullEKTField, in an attempt to consume additional
CPU resources of the receiving system by causing the receiving system to decrypt the EKT
ciphertext and detect an authentication failure. In some cases, caching the previous values of the
ciphertext as described in Section 4.3.2 helps mitigate this issue.

In a similar vein, EKT has no replay protection, so an attacker could implant improper keys in
receivers by capturing EKTCiphertext values encrypted with a given EKTKey and replaying them
in a different context, e.g., from a different sender. When the underlying SRTP transform

MUST

MUST [RFC4086]
MUST NOT

MUST NOT

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc6347#section-4.2.4

provides integrity protection, this attack will just result in packet loss. If it does not, then it will
result in random data being fed to RTP payload processing. An attacker that is in a position to
mount these attacks, however, could achieve the same effects more easily without attacking EKT.

The key encryption keys distributed with EKTKey messages are group shared symmetric keys,
which means they do not provide protection within the group. Group members can impersonate
each other; for example, any group member can generate an EKT tag for any SSRC. The entity
that distributes EKTKeys can decrypt any keys distributed using EKT and thus any media
protected with those keys.

Each EKT cipher specifies a value T that is the maximum number of times a given key can be
used. An endpoint encrypt more than T different FullEKTField values using the same
EKTKey. In addition, the EKTKey be used beyond the lifetime provided by the TTL
described in Section 5.2.

The confidentiality, integrity, and authentication of the EKT cipher be at least as strong as
the SRTP cipher and at least as strong as the DTLS-SRTP ciphers.

Part of the EKTPlaintext is known or is easily guessable to an attacker. Thus, the EKT Cipher
 resist known plaintext attacks. In practice, this requirement does not impose any

restrictions on our choices, since the ciphers in use provide high security even when much
plaintext is known.

An EKT cipher resist attacks in which both ciphertexts and plaintexts can be adaptively
chosen and adversaries that can query both the encryption and decryption functions adaptively.

In some systems, when a member of a conference leaves the conference, that conference is
rekeyed so that the member who left the conference no longer has the key. When changing to a
new EKTKey, it is possible that the attacker could block the EKTKey message getting to a
particular endpoint and that endpoint would keep sending media encrypted using the old key. To
mitigate that risk, the lifetime of the EKTKey be limited by using the ekt_ttl.

MUST NOT
MUST NOT

MUST

MUST

MUST

MUST

7. IANA Considerations

7.1. EKT Message Types
IANA has created a new table for "EKT Message Types" in the "Real-Time Transport Protocol
(RTP) Parameters" registry. The initial values in this registry are as follows:

Message Type Value Specification

Short 0 RFC 8870

Unassigned 1

Full 2 RFC 8870

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 18

New entries in this table can be added via "Specification Required" as defined in . To
avoid conflicts with pre-standard versions of EKT that have been deployed, IANA give
preference to the allocation of even values over odd values until the even code points are
consumed. Allocated values be in the range of 0 to 254.

All new EKT messages be defined to have a length as second from the last element, as
specified.

Message Type Value Specification

Unassigned 3-254

Reserved 255 RFC 8870

Table 2: EKT Message Types

[RFC8126]
SHOULD

MUST

MUST

7.2. EKT Ciphers
IANA has created a new table for "EKT Ciphers" in the "Real-Time Transport Protocol (RTP)
Parameters" registry. The initial values in this registry are as follows:

New entries in this table can be added via "Specification Required" as defined in . The
expert ensure that the specification defines the values for L and T as required in Section
4.4 of this document. Allocated values be in the range of 0 to 254.

Name Value Specification

AESKW128 0 RFC 8870

AESKW256 1 RFC 8870

Unassigned 2-254

Reserved 255 RFC 8870

Table 3: EKT Cipher Types

[RFC8126]
SHOULD

MUST

Value:

Extension Name:

TLS 1.3:

Recommended:

7.3. TLS Extensions
IANA has added supported_ekt_ciphers as a new extension name to the "TLS ExtensionType
Values" table of the "Transport Layer Security (TLS) Extensions" registry:

39

supported_ekt_ciphers

CH, SH

Y

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 19

[RFC2119]

[RFC3264]

[RFC3711]

[RFC5234]

[RFC5649]

[RFC5764]

[RFC6347]

8. References

8.1. Normative References

, , ,
, , March 1997,
.

,
, , , June 2002,

.

,
, , , March

2004, .

,
, , , , January 2008,

.

,
, , , September 2009,

.

,
,

, , May 2010,
.

, ,
, , January 2012,
.

Reference: RFC 8870

Value:

Description:

DTLS-OK:

Reference:

Comment:

7.4. TLS Handshake Type
IANA has added ekt_key as a new entry in the "TLS HandshakeType" table of the "Transport
Layer Security (TLS) Parameters" registry:

26

ekt_key

Y

RFC 8870

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rosenberg, J. and H. Schulzrinne "An Offer/Answer Model with Session
Description Protocol (SDP)" RFC 3264 DOI 10.17487/RFC3264
<https://www.rfc-editor.org/info/rfc3264>

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman "The Secure
Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/info/rfc3711>

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Housley, R. and M. Dworkin "Advanced Encryption Standard (AES) Key Wrap
with Padding Algorithm" RFC 5649 DOI 10.17487/RFC5649
<https://www.rfc-editor.org/info/rfc5649>

McGrew, D. and E. Rescorla "Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"
RFC 5764 DOI 10.17487/RFC5764 <https://www.rfc-editor.org/info/
rfc5764>

Rescorla, E. and N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 20

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5649
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347

[RFC8126]

[RFC8174]

[RFC8446]

[RFC4086]

[RFC8723]

[RFC8871]

[TLS-DTLS13]

,
, , , , June

2017, .

, ,
, , , May 2017,

.

, , ,
, August 2018, .

8.2. Informative References

,
, , , , June 2005,

.

,
, ,

, April 2020, .

,
, , ,

October 2020, .

,
, ,

, 29 May 2020, .

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Eastlake 3rd, D., Schiller, J., and S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Jennings, C., Jones, P., Barnes, R., and A.B. Roach "Double Encryption Procedures
for the Secure Real-Time Transport Protocol (SRTP)" RFC 8723 DOI 10.17487/
RFC8723 <https://www.rfc-editor.org/info/rfc8723>

Jones, P., Benham, D., and C. Groves "A Solution Framework for Private Media in
Privacy-Enhanced RTP Conferencing (PERC)" RFC 8871 DOI 10.17487/RFC8871

<https://www.rfc-editor.org/info/rfc8871>

Rescorla, E., Tschofenig, H., and N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" Work in Progress Internet-Draft, draft-
ietf-tls-dtls13-38 <https://tools.ietf.org/html/draft-ietf-tls-dtls13-38>

Acknowledgments
Thank you to , who provided a detailed review and significant help with crafting
text for this document. Thanks to , , , ,

, , , , , ,
, , and for fruitful discussions, comments, and

contributions to this document.

Russ Housley
David Benham Yi Cheng Lakshminath Dondeti Kai Fischer

Nermeen Ismail Paul Jones Eddy Lem Jonathan Lennox Michael Peck Rob Raymond Sean
Turner Magnus Westerlund Felix Wyss

Authors' Addresses
Cullen Jennings
Cisco Systems

 fluffy@iii.ca Email:

John Mattsson
Ericsson AB

 john.mattsson@ericsson.com Email:

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 21

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc8723
https://www.rfc-editor.org/info/rfc8871
https://tools.ietf.org/html/draft-ietf-tls-dtls13-38
mailto:fluffy@iii.ca
mailto:john.mattsson@ericsson.com

David A. McGrew
Cisco Systems

 mcgrew@cisco.com Email:

Dan Wing
Citrix Systems, Inc.

 dwing-ietf@fuggles.com Email:

Flemming Andreasen
Cisco Systems

 fandreas@cisco.com Email:

RFC 8870 EKT SRTP October 2020

Jennings, et al. Standards Track Page 22

mailto:mcgrew@cisco.com
mailto:dwing-ietf@fuggles.com
mailto:fandreas@cisco.com

	RFC 8870
	Encrypted Key Transport for DTLS and Secure RTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	3. Conventions Used in This Document
	4. Encrypted Key Transport
	4.1. EKTField Formats
	4.2. SPIs and EKT Parameter Sets
	4.3. Packet Processing and State Machine
	4.3.1. Outbound Processing
	4.3.2. Inbound Processing

	4.4. Ciphers
	4.4.1. AES Key Wrap
	4.4.2. Defining New EKT Ciphers

	4.5. Synchronizing Operation
	4.6. Timing and Reliability Considerations

	5. Use of EKT with DTLS-SRTP
	5.1. DTLS-SRTP Recap
	5.2. SRTP EKT Key Transport Extensions to DTLS-SRTP
	5.2.1. Negotiating an EKTCipher
	5.2.2. Establishing an EKT Key

	5.3. Offer/Answer Considerations
	5.4. Sending the DTLS EKTKey Reliably

	6. Security Considerations
	7. IANA Considerations
	7.1. EKT Message Types
	7.2. EKT Ciphers
	7.3. TLS Extensions
	7.4. TLS Handshake Type

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Authors' Addresses

