
RFC 8855
The Binary Floor Control Protocol (BFCP)

Abstract
Floor control is a means to manage joint or exclusive access to shared resources in a (multiparty)
conferencing environment. Thereby, floor control complements other functions -- such as
conference and media session setup, conference policy manipulation, and media control -- that
are realized by other protocols.

This document specifies the Binary Floor Control Protocol (BFCP). BFCP is used between floor
participants and floor control servers, and between floor chairs (i.e., moderators) and floor
control servers.

This document obsoletes RFC 4582.

Stream: Internet Engineering Task Force (IETF)
RFC: 8855
Obsoletes: 4582
Category: Standards Track
Published: April 2020
ISSN: 2070-1721
Authors:

 G. Camarillo
Ericsson

K. Drage T. Kristensen
Jotron

J. Ott
Technical University Munich

C. Eckel
Cisco

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8855

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Camarillo, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8855
https://www.rfc-editor.org/rfc/rfc4582
https://www.rfc-editor.org/info/rfc8855

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Scope

3.1. Floor Creation

3.2. Obtaining Information to Contact a Floor Control Server

3.3. Obtaining Floor-Resource Associations

3.4. Privileges of Floor Control

4. Overview of Operation

4.1. Floor Participant to Floor Control Server Interface

4.2. Floor Chair to Floor Control Server Interface

5. Packet Format

5.1. COMMON-HEADER Format

5.2. Attribute Format

5.2.1. BENEFICIARY-ID

5.2.2. FLOOR-ID

5.2.3. FLOOR-REQUEST-ID

5.2.4. PRIORITY

5.2.5. REQUEST-STATUS

5.2.6. ERROR-CODE

5.2.6.1. Error Specific Details for Error Code 4

5.2.7. ERROR-INFO

5.2.8. PARTICIPANT-PROVIDED-INFO

5.2.9. STATUS-INFO

5.2.10. SUPPORTED-ATTRIBUTES

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

5.2.11. SUPPORTED-PRIMITIVES

5.2.12. USER-DISPLAY-NAME

5.2.13. USER-URI

5.2.14. BENEFICIARY-INFORMATION

5.2.15. FLOOR-REQUEST-INFORMATION

5.2.16. REQUESTED-BY-INFORMATION

5.2.17. FLOOR-REQUEST-STATUS

5.2.18. OVERALL-REQUEST-STATUS

5.3. Message Format

5.3.1. FloorRequest

5.3.2. FloorRelease

5.3.3. FloorRequestQuery

5.3.4. FloorRequestStatus

5.3.5. UserQuery

5.3.6. UserStatus

5.3.7. FloorQuery

5.3.8. FloorStatus

5.3.9. ChairAction

5.3.10. ChairActionAck

5.3.11. Hello

5.3.12. HelloAck

5.3.13. Error

5.3.14. FloorRequestStatusAck

5.3.15. FloorStatusAck

5.3.16. Goodbye

5.3.17. GoodbyeAck

6. Transport

6.1. Reliable Transport

6.2. Unreliable Transport

6.2.1. Congestion Control

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 3

6.2.2. ICMP Error Handling

6.2.3. Fragmentation Handling

6.2.4. NAT Traversal

7. Lower-Layer Security

8. Protocol Transactions

8.1. Client Behavior

8.2. Server Behavior

8.3. Timers

8.3.1. Request Retransmission Timer, T1

8.3.2. Response Retransmission Timer, T2

8.3.3. Timer Values

9. Authentication and Authorization

9.1. TLS/DTLS Based Mutual Authentication

10. Floor Participant Operations

10.1. Requesting a Floor

10.1.1. Sending a FloorRequest Message

10.1.2. Receiving a Response

10.1.3. Reception of a Subsequent FloorRequestStatus Message

10.2. Cancelling a Floor Request and Releasing a Floor

10.2.1. Sending a FloorRelease Message

10.2.2. Receiving a Response

11. Chair Operations

11.1. Sending a ChairAction Message

11.2. Receiving a Response

12. General Client Operations

12.1. Requesting Information about Floors

12.1.1. Sending a FloorQuery Message

12.1.2. Receiving a Response

12.1.3. Reception of a Subsequent FloorStatus Message

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 4

12.2. Requesting Information about Floor Requests

12.2.1. Sending a FloorRequestQuery Message

12.2.2. Receiving a Response

12.3. Requesting Information about a User

12.3.1. Sending a UserQuery Message

12.3.2. Receiving a Response

12.4. Obtaining the Capabilities of a Floor Control Server

12.4.1. Sending a Hello Message

12.4.2. Receiving Responses

13. Floor Control Server Operations

13.1. Reception of a FloorRequest Message

13.1.1. Generating the First FloorRequestStatus Message

13.1.2. Generation of Subsequent FloorRequestStatus Messages

13.2. Reception of a FloorRequestQuery Message

13.3. Reception of a UserQuery Message

13.4. Reception of a FloorRelease Message

13.5. Reception of a FloorQuery Message

13.5.1. Generation of the First FloorStatus Message

13.5.2. Generation of Subsequent FloorStatus Messages

13.6. Reception of a ChairAction Message

13.7. Reception of a Hello Message

13.8. Error Message Generation

14. Security Considerations

15. IANA Considerations

15.1. Attributes Subregistry

15.2. Primitives Subregistry

15.3. Request Statuses Subregistry

15.4. Error Codes Subregistry

16. Changes from RFC 4582

16.1. Extensions for an Unreliable Transport

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 5

16.2. Other Changes

17. References

17.1. Normative References

17.2. Informative References

Appendix A. Example Call Flows for BFCP over an Unreliable Transport

Appendix B. Motivation for Supporting an Unreliable Transport

B.1. Motivation

B.1.1. Alternatives Considered

B.1.1.1. ICE TCP

B.1.1.2. Teredo

B.1.1.3. GUT

B.1.1.4. UPnP IGD

B.1.1.5. NAT PMP

B.1.1.6. SCTP

B.1.1.7. BFCP over UDP Transport

Acknowledgements

Authors' Addresses

1. Introduction
Within a conference, some applications need to manage the access to a set of shared resources,
such as the right to send media to a particular media session. Floor control enables such
applications to provide users with coordinated (shared or exclusive) access to these resources.

The Requirements for Floor Control Protocol list a set of requirements that need to be met by
floor control protocols. The Binary Floor Control Protocol (BFCP), which is specified in this
document, meets these requirements.

In addition, BFCP has been designed so that it can be used in low-bandwidth environments. The
binary encoding used by BFCP achieves a small message size (when message signatures are not
used) that keeps the time it takes to transmit delay-sensitive BFCP messages to a minimum.
Delay-sensitive BFCP messages include FloorRequest, FloorRelease, FloorRequestStatus, and
ChairAction. It is expected that future extensions to these messages will not increase the size of
these messages in a significant way.

[18]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 6

The remainder of this document is organized as follows: Section 2 defines the terminology used
throughout this document, Section 3 discusses the scope of BFCP (i.e., which tasks fall within the
scope of BFCP and which ones are performed using different mechanisms), Section 4 provides a
non-normative overview of BFCP operation. The subsequent sections provide the normative
specification of BFCP. Section 16 summarizes changes from .RFC 4582 [3]

Media Participant:

Client:

Floor:

Floor Chair:

Floor Control:

Floor Control Server:

Floor Participant:

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
shown here.

An entity that has access to the media resources of a conference (e.g., it can
receive a media stream). In floor-controlled conferences, a given media participant is
typically co-located with a floor participant, but it does not need to be. Third-party floor
requests consist of having a floor participant request a floor for a media participant when
they are not co-located. The protocol between a floor participant and a media participant (that
are not co-located) is outside the scope of this document.

A floor participant or a floor chair that communicates with a floor control server using
BFCP.

A temporary permission to access or manipulate a specific shared resource or set of
resources.

A logical entity that manages one floor (grants, denies, or revokes a floor). An
entity that assumes the logical role of a floor chair for a given transaction may assume a
different role (e.g., floor participant) for a different transaction. The roles of floor chair and
floor participant are defined on a transaction-by-transaction basis. BFCP transactions are
defined in Section 8.

A mechanism that enables applications or users to gain safe and mutually
exclusive or non-exclusive input access to the shared object or resource.

A logical entity that maintains the state of the floor(s), including which
floors exists, who the floor chairs are, who holds a floor, etc. Requests to manipulate a floor
are directed at the floor control server. The floor control server of a conference may perform
other logical roles (e.g., floor participant) in another conference.

A logical entity that requests floors, and possibly information about them,
from a floor control server. An entity that assumes the logical role of a floor participant for a
given transaction may assume a different role (e.g., a floor chair) for a different transaction.
The roles of floor participant and floor chair are defined on a transaction-by-transaction basis.
BFCP transactions are defined in Section 8. In floor-controlled conferences, a given floor

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[1] [10]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 7

Participant:

BFCP Connection:

Transaction Failure Window:

participant is typically co-located with a media participant, but it does not need to be. Third-
party floor requests consist of having a floor participant request a floor for a media
participant when they are not co-located.

An entity that acts as a floor participant, as a media participant, or as both.

A transport association between BFCP entities, used to exchange BFCP
messages.

When communicating over an unreliable transport, this is some
period of time less than or equal to T1*24 (see Section 8.3). For reliable transports, this period
of time is unbounded.

3. Scope
As stated earlier, BFCP is a protocol to coordinate access to shared resources in a conference
following the requirements defined in . Floor control complements other functions defined in
the Centralized Conferencing (XCON) Framework . The floor control protocol BFCP defined in
this document only specifies a means to arbitrate access to floors. The rules and constraints for
floor arbitration and the results of floor assignments are outside the scope of this document and
are defined by other protocols .

Figure 1 shows the tasks that BFCP can perform.

BFCP provides a means:

for floor participants to send floor requests to floor control servers.
for floor control servers to grant or deny requests to access a given resource from floor
participants.

[18]
[19]

[19]

Figure 1: Functionality provided by BFCP

 +---------+
 | Floor |
 | Chair |
 | |
 +---------+
 ^ |
 | |
 Notification | | Decision
 | |
 | |
 Floor | v
+-------------+ Request +---------+ +-------------+
Floor	----------->	Floor	Notification	Floor
Participant		Control	------------->	Participant
	<-----------	Server		
+-------------+ Granted or +---------+ +-------------+
 Denied

•
•

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 8

for floor chairs to send floor control servers decisions regarding floor requests.
for floor control servers to keep floor participants and floor chairs informed about the status
of a given floor or a given floor request.

Even though tasks that do not belong to the previous list are outside the scope of BFCP, some of
these out-of-scope tasks relate to floor control and are essential for creating floors and
establishing BFCP connections between different entities. In the following subsections, we
discuss some of these tasks and mechanisms to perform them.

•
•

3.1. Floor Creation
The association of a given floor with a resource or a set of resources (e.g., media streams) is out
of the scope of BFCP as described in . Floor creation and termination are also outside the
scope of BFCP; these aspects are handled using the conference control protocol for manipulating
the conference object. Consequently, the floor control server needs to stay up to date on changes
to the conference object (e.g., when a new floor is created).

Conference control clients using Centralized Conferencing Manipulation Protocol (CCMP)
can specify such floor-related settings in the <floor-information> element of the to-be
created conference object provided in the body of a CCMP confRequest/create message issued to
the conference control server.

[19]

[23]
[22]

3.2. Obtaining Information to Contact a Floor Control Server
A client needs a set of data in order to establish a BFCP connection to a floor control server.
These data include the transport address of the server, the conference identifier, and a user
identifier.

Clients can obtain this information in different ways. One is to use a Session Description Protocol
(SDP) offer/answer exchange, which is described in . How to establish a connection to a
BFCP floor control server is outside the context of an offer/answer exchange when using a
reliable transport is described in . Other mechanisms are described in the XCON Framework

 (and other related documents). For unreliable transports, the use of an SDP offer/answer
exchange is the only specified mechanism.

[17] [12]

[4]
[19]

3.3. Obtaining Floor-Resource Associations
Floors are associated with resources. For example, a floor that controls who talks at a given time
has a particular audio session as its associated resource. Associations between floors and
resources are part of the conference object.

Floor participants and floor chairs need to know which resources are associated with which
floors. They can obtain this information by using different mechanisms, such as an SDP offer/
answer exchange. How to use an SDP offer/answer exchange to obtain these associations is
described in .

[17]
[12]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 9

Note that floor participants perform SDP offer/answer exchanges with the
conference focus of the conference. So, the conference focus needs to obtain
information about associations between floors and resources in order to be able to
provide this information to a floor participant in an SDP offer/answer exchange.

Other mechanisms for obtaining this information, including discussion of how the information is
made available to a (SIP) focus, are described in the XCON Framework (and other related
documents). According to the conferencing system policies, conference control clients using
CCMP can modify the floor settings of a conference by issuing CCMP confRequest/update
messages providing the specific updates to the <floor-information> element of the target
conference object. More information about CCMP and BFCP interaction can be found in .

[19]

[23]

[24]

3.4. Privileges of Floor Control
A participant whose floor request is granted has the right to use the resource or resources
associated with the floor that was requested. For example, the participant may have the right to
send media over a particular audio stream.

Nevertheless, holding a floor does not imply that others will not be able to use its associated
resources at the same time, even if they do not have the right to do so. Determination of which
media participants can actually use the resources in the conference is discussed in the XCON
Framework .[19]

4. Overview of Operation
This section provides a non-normative description of BFCP operations. Section 4.1 describes the
interface between floor participants and floor control servers, and Section 4.2 describes the
interface between floor chairs and floor control servers.

BFCP messages, which use a TLV (Type-Length-Value) binary encoding, consist of a COMMON-
HEADER followed by a set of attributes. The COMMON-HEADER contains, among other
information, a 32-bit conference identifier. Floor participants, media participants, and floor
chairs are identified by 16-bit user identifiers.

BFCP supports nested attributes (i.e., attributes that contain attributes). These are referred to as
grouped attributes.

There are two types of transactions in BFCP: client-initiated transactions and server-initiated
transactions. Section 8 describes both types of transactions in detail.

4.1. Floor Participant to Floor Control Server Interface
Floor participants request a floor by sending a FloorRequest message to the floor control server.
BFCP supports third-party floor requests. That is, the floor participant sending the floor request
need not be co-located with the media participant that will get the floor once the floor request is

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 10

granted. FloorRequest messages carry the identity of the requester in the User ID field of the
COMMON-HEADER, and the identity of the beneficiary of the floor (in third-party floor requests)
in a BENEFICIARY-ID attribute.

Third-party floor requests can be sent, for example, by floor participants that have a
BFCP connection to the floor control server but that are not media participants (i.e.,
they do not handle any media).

FloorRequest messages identify the floor or floors being requested by carrying their 16-bit floor
identifiers in FLOOR-ID attributes. If a FloorRequest message carries more than one floor
identifier, the floor control server treats all the floor requests as an atomic package. That is, the
floor control server either grants or denies all the floors in the FloorRequest message.

Floor control servers respond to FloorRequest messages with FloorRequestStatus messages,
which provide information about the status of the floor request. The first FloorRequestStatus
message is the response to the FloorRequest message from the client, and therefore has the same
Transaction ID as the FloorRequest.

Additionally, the first FloorRequestStatus message carries the Floor Request ID in a FLOOR-
REQUEST-INFORMATION attribute. Subsequent FloorRequestStatus messages related to the same
floor request will carry the same Floor Request ID. This way, the floor participant can associate
them with the appropriate floor request.

Messages from the floor participant related to a particular floor request also use the same Floor
Request ID as the first FloorRequestStatus message from the floor control server.

Figure 2 and Figure 3 show examples of call flows where BFCP is used over a reliable transport.
Appendix A shows the same call flow examples using an unreliable transport.

Figure 2 shows how a floor participant requests a floor, obtains it, and, at a later time, releases it.
This figure illustrates the use, among other things, of the Transaction ID and the FLOOR-
REQUEST-ID attribute.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 11

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 12

 Floor Participant Floor Control
 Server
 |(1) FloorRequest |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorRequestStatus |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Pending |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(3) FloorRequestStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(4) FloorRequestStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(5) FloorRelease |
 |Transaction ID: 154 |
 |User ID: 234 |
 |FLOOR-REQUEST-ID: 789 |
 |-->|
 | |
 |(6) FloorRequestStatus |
 |Transaction ID: 154 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Released |
 | FLOOR-REQUEST-STATUS |

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 13

Figure 3 shows how a floor participant requests to be informed on the status of a floor. The first
FloorStatus message from the floor control server is the response to the FloorQuery message and,
as such, has the same Transaction ID as the FloorQuery message.

Subsequent FloorStatus messages consist of server-initiated transactions, and therefore their
Transaction ID is 0 given this example uses a reliable transport. FloorStatus message (2) indicates
that there are currently two floor requests for the floor whose Floor ID is 543. FloorStatus
message (3) indicates that the floor requests with Floor Request ID 764 has been granted, and the
floor request with Floor Request ID 635 is the first in the queue. FloorStatus message (4) indicates
that the floor request with Floor Request ID 635 has been granted.

Figure 2: Requesting and releasing a floor

 | Floor ID: 543 |
 |<--|

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 14

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 15

 Floor Participant Floor Control
 Server
 |(1) FloorQuery |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorStatus |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 2nd |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(3) FloorStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(4) FloorStatus |
 |Transaction ID: 0 |

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 16

FloorStatus messages contain information about the floor requests they carry. For example,
FloorStatus message (4) indicates that the floor request with Floor Request ID 635 has as the
beneficiary (i.e., the participant that holds the floor when a particular floor request is granted)
the participant whose User ID is 154. The floor request applies only to the floor whose Floor ID is
543. That is, this is not a multi-floor floor request.

A multi-floor floor request applies to more than one floor (e.g., a participant wants
to be able to speak and write on the whiteboard at the same time). The floor control
server treats a multi-floor floor request as an atomic package. That is, the floor
control server either grants the request for all floors or denies the request for all
floors.

Figure 3: Obtaining status information about a floor

 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|

4.2. Floor Chair to Floor Control Server Interface
Figure 4 shows a floor chair instructing a floor control server to grant a floor.

Note, however, that although the floor control server needs to take into
consideration the instructions received in ChairAction messages (e.g., granting a
floor), it does not necessarily need to perform them exactly as requested by the floor
chair. The operation that the floor control server performs depends on the
ChairAction message and on the internal state of the floor control server.

For example, a floor chair may send a ChairAction message granting a floor that was requested
as part of an atomic floor request operation that involved several floors. Even if the chair
responsible for one of the floors instructs the floor control server to grant the floor, the floor
control server will not grant it until the chairs responsible for the other floors agree to grant
them as well. In another example, a floor chair may instruct the floor control server to grant a
floor to a participant. The floor control server needs to revoke the floor from its current holder
before granting it to the new participant.

So, the floor control server is ultimately responsible for keeping a coherent floor state using
instructions from floor chairs as input to this state.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 17

Figure 4: Chair instructing the floor control server

 Floor Chair Floor Control
 Server
 |(1) ChairAction |
 |Transaction ID: 769 |
 |User ID: 357 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | Request Status: Granted |
 |-->|
 | |
 |(2) ChairActionAck |
 |Transaction ID: 769 |
 |User ID: 357 |
 |<--|

5. Packet Format
BFCP packets consist of a 12-octet COMMON-HEADER followed by attributes. All the protocol
values be sent in network byte order.MUST

Ver:

5.1. COMMON-HEADER Format
The following is the format of the COMMON-HEADER.

This 3-bit field defines the version of BFCP to which this message adheres. This
specification defines two versions: 1 and 2. The version field be set to 1 when using
BFCP over a reliable transport. The version field be set to 2 when using BFCP over an
unreliable transport. If a floor control server receives a message with an unsupported version

Figure 5: COMMON-HEADER format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Ver |R|F| Res | Primitive | Payload Length |
 +-+
 | Conference ID |
 +-+
 | Transaction ID | User ID |
+> +-+
| | Fragment Offset (if F is set) | Fragment Length (if F is set) |
+> +-+
|
+---- These fragment fields are never present
 when using reliable transports

MUST
MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 18

R:

F:

Res:

Primitive:

field value or a message with a version number that is not permitted with the transport over
which it was received, the server indicate it does not support the protocol version by
sending an Error message with parameter value 12 (Unsupported Version). Note that BFCP
entities supporting only the subset will not support this parameter value.

The Transaction Responder (R) flag bit has relevance only for use of BFCP over an unreliable
transport. When cleared, it indicates that this message is a request initiating a new
transaction, and the Transaction ID that follows has been generated for this transaction.
When set, it indicates that this message is a response to a previous request, and the
Transaction ID that follows is the one associated with that request. When BFCP is used over a
reliable transport, the flag has no significance and be cleared by the sender and
be ignored by the receiver.

The Fragmentation (F) flag bit has relevance only for use of BFCP over an unreliable
transport. When cleared, the message is not fragmented. When set, it indicates that the
message is a fragment of a large, fragmented BFCP message. (The optional fields Fragment
Offset and Fragment Length described below are present only if the F flag is set). When BFCP
is used over a reliable transport, the flag has no significance and be cleared by the
sender, and the flag be ignored by the receiver. In the latter case, the receiver should
also ignore the Fragment Offset and Fragment Length fields when processing the COMMON-
HEADER.

The 3 bits in the reserved field be set to zero by the sender of the message and
be ignored by the receiver.

This 8-bit field identifies the main purpose of the message. The following primitive
values are defined:

MUST

[3]

MUST MUST

MUST
MUST

MUST MUST

Value Primitive Direction

1 FloorRequest P -> S

2 FloorRelease P -> S

3 FloorRequestQuery P -> S ; Ch -> S

4 FloorRequestStatus P <- S ; Ch <- S

5 UserQuery P -> S ; Ch -> S

6 UserStatus P <- S ; Ch <- S

7 FloorQuery P -> S ; Ch -> S

8 FloorStatus P <- S ; Ch <- S

9 ChairAction Ch -> S

S: Floor Control Server / P: Floor Participant / Ch: Floor Chair

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 19

Payload Length:

Conference ID:

Transaction ID:

User ID:

This 16-bit field contains the length of the message in 4-octet units, excluding
the COMMON-HEADER. If a floor control server receives a message with an incorrect Payload
Length field value, the receiving server send an Error message with parameter value 13
(Incorrect Message Length) to indicate this and then discard the message. Other entities that
receive a message with an incorrect length discard the message.

Note: BFCP is designed to achieve small message size, as explained in Section 1, and
BFCP entities are required to keep the BFCP message size smaller than the size
limited by the 16-bit Payload Length field. To convey information not strictly related
to floor control, other protocols should be used, such as the XCON Framework (cf.
Section 3).

This 32-bit unsigned integer field identifies the conference to which the message
belongs. It is that the conference identifier be randomly chosen. (Note that
the use of predictable conference identifiers in conjunction with a nonsecure transport
protocol makes BFCP susceptible to off-path data injection attacks, where an attacker can
forge a request or response message.)

This field contains a 16-bit value that allows users to match a given message
with its response (see Section 8).

This field contains a 16-bit unsigned integer that uniquely identifies a participant
within a conference.

Value Primitive Direction

10 ChairActionAck Ch <- S

11 Hello P -> S ; Ch -> S

12 HelloAck P <- S ; Ch <- S

13 Error P <- S ; Ch <- S

14 FloorRequestStatusAck P -> S ; Ch -> S

15 FloorStatusAck P -> S ; Ch -> S

16 Goodbye P -> S ; Ch -> S ; P <- S ; Ch <- S

17 GoodbyeAck P -> S ; Ch -> S ; P <- S ; Ch <- S

S: Floor Control Server / P: Floor Participant / Ch: Floor Chair

Table 1: BFCP primitives

MUST

MUST

RECOMMENDED

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 20

Fragment Offset:

Fragment Length:

The identity used by a participant in BFCP, which is carried in the User ID field, is
generally mapped to the identity used by the same participant in the session
establishment protocol (e.g., in SIP). The way this mapping is performed is outside
the scope of this specification.

This optional field is present only if the F flag is set and contains a 16-bit value
that specifies the number of 4-octet units contained in previous fragments, excluding the
COMMON-HEADER.

This optional field is present only if the F flag is set and contains a 16-bit
value that specifies the number of 4-octet units contained in this fragment, excluding the
COMMON-HEADER. BFCP entities that receive message fragments that, individually or
collectively, exceed the Payload Length value discard the message. Additionally, if the
receiver is a floor control server, it must also send an Error message with parameter value 13
(Incorrect Message Length)

MUST

Type:

Unsigned16:

OctetString16:

OctetString:

Grouped:

5.2. Attribute Format
BFCP attributes are encoded in TLV (Type-Length-Value) format. Attributes are 32-bit aligned.

This 7-bit field contains the type of the attribute. Each attribute, identified by its type, has
a particular format. The attribute formats defined are:

The contents of the attribute consist of a 16-bit unsigned integer.

The contents of the attribute consist of 16 bits of arbitrary data.

The contents of the attribute consist of arbitrary data of variable length.

The contents of the attribute consist of a sequence of attributes.

Note that extension attributes defined in the future may define new attribute
formats.

Figure 6: Attribute format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type |M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Attribute Contents /
 / /
 | |
 +-+

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 21

M:

The following attribute types are defined:

The 'M' bit, known as the Mandatory bit, indicates whether support of the attribute is
required. If a floor control server receives an unrecognized attribute with the 'M' bit set, the
server send an Error message with parameter value 4 (Unknown Mandatory Attribute)
to indicate this. The 'M' bit is significant for extension attributes defined in other documents
only. All attributes specified in this document be understood by the receiver so that the

Type Attribute Format

1 BENEFICIARY-ID Unsigned16

2 FLOOR-ID Unsigned16

3 FLOOR-REQUEST-ID Unsigned16

4 PRIORITY OctetString16

5 REQUEST-STATUS OctetString16

6 ERROR-CODE OctetString

7 ERROR-INFO OctetString

8 PARTICIPANT-PROVIDED-INFO OctetString

9 STATUS-INFO OctetString

10 SUPPORTED-ATTRIBUTES OctetString

11 SUPPORTED-PRIMITIVES OctetString

12 USER-DISPLAY-NAME OctetString

13 USER-URI OctetString

14 BENEFICIARY-INFORMATION Grouped

15 FLOOR-REQUEST-INFORMATION Grouped

16 REQUESTED-BY-INFORMATION Grouped

17 FLOOR-REQUEST-STATUS Grouped

18 OVERALL-REQUEST-STATUS Grouped

Table 2: BFCP attributes

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 22

Length:

Attribute Contents:

setting of the 'M' bit is irrelevant for these. Unrecognized attributes, such as those that might
be specified in future extensions, that do not have the 'M' bit set are ignored, but the message
is processed.

This 8-bit field contains the length of the attribute in octets, excluding any padding
defined for specific attributes. The length of attributes that are not grouped includes the Type,
'M' bit, and Length fields. The Length in grouped attributes is the length of the grouped
attribute itself (including Type, 'M' bit, and Length fields) plus the total length (including
padding) of all the included attributes.

The contents of the different attributes are defined in the following sections.

Beneficiary ID:

5.2.1. BENEFICIARY-ID

The following is the format of the BENEFICIARY-ID attribute.

This field contains a 16-bit value that uniquely identifies a user within a
conference.

Note that although the formats of the Beneficiary ID and of the User ID field in the
COMMON-HEADER are similar, their semantics are different. The Beneficiary ID is
used in third-party floor requests and to request information about a particular
participant.

Figure 7: BENEFICIARY-ID format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 1|M|0 0 0 0 0 1 0 0| Beneficiary ID |
 +-+

Floor ID:

5.2.2. FLOOR-ID

The following is the format of the FLOOR-ID attribute.

This field contains a 16-bit value that uniquely identifies a floor within a conference.

Figure 8: FLOOR-ID format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 0|M|0 0 0 0 0 1 0 0| Floor ID |
 +-+

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 23

Floor Request ID:

5.2.3. FLOOR-REQUEST-ID

The following is the format of the FLOOR-REQUEST-ID attribute.

This field contains a 16-bit value that identifies a floor request at the floor
control server.

Figure 9: FLOOR-REQUEST-ID format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 1|M|0 0 0 0 0 1 0 0| Floor Request ID |
 +-+

Prio:

5.2.4. PRIORITY

The following is the format of the PRIORITY attribute.

This field contains a 3-bit Priority value, as shown in Table 3. Senders use
values higher than 4 in this field. Receivers treat values higher than 4 as if the value
received were 4 (Highest). The default Priority value when the PRIORITY attribute is missing
is 2 (Normal).

Figure 10: PRIORITY format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 0|M|0 0 0 0 0 1 0 0|Prio | Reserved |
 +-+

SHOULD NOT
MUST

Value Priority

0 Lowest

1 Low

2 Normal

3 High

4 Highest

Table 3: Priority values

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 24

Reserved: The 13 bits in the reserved field be set to zero by the sender of the message and
 be ignored by the receiver.

MUST
MUST

Request Status:

Queue Position:

5.2.5. REQUEST-STATUS

The following is the format of the REQUEST-STATUS attribute.

This 8-bit field contains the status of the request, as described in the following
table.

This 8-bit field contains, when applicable, the position of the floor request in
the floor request queue at the server. If the Request Status value is different from Accepted, if
the floor control server does not implement a floor request queue, or if the floor control
server does not want to provide the client with this information, all the bits of this field

 be set to zero.

A floor request is in Pending state if the floor control server needs to contact a floor chair in
order to accept the floor request, but has not done it yet. Once the floor control chair accepts the
floor request, the floor request is moved to the Accepted state.

Figure 11: REQUEST-STATUS format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 1|M|0 0 0 0 0 1 0 0|Request Status |Queue Position |
 +-+

Value Status

1 Pending

2 Accepted

3 Granted

4 Denied

5 Cancelled

6 Released

7 Revoked

Table 4: Request Status values

SHOULD

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 25

Error Code:

5.2.6. ERROR-CODE

The following is the format of the ERROR-CODE attribute.

This 8-bit field contains an error code from the following table. If an error code is
not recognized by the receiver, then the receiver assume that an error exists, and
therefore that the original message that triggered the Error message to be sent is processed,
but the nature of the error is unclear.

Figure 12: ERROR-CODE format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 1 0|M| Length | Error Code | |
 +-+ |
 | |
 | Error Specific Details |
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

MUST

Value Meaning

1 Conference Does Not Exist

2 User Does Not Exist

3 Unknown Primitive

4 Unknown Mandatory Attribute

5 Unauthorized Operation

6 Invalid Floor ID

7 Floor Request ID Does Not Exist

8 You have Already Reached the Maximum Number of Ongoing Floor Requests for
This Floor

9 Use TLS

10 Unable to Parse Message

11 Use DTLS

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 26

Error Specific Details:

Padding:

Note: The Generic Error error code is intended to be used when an error occurs and
the other specific error codes do not apply.

Present only for certain error codes. In this document, this field is
present only for Error Code 4 (Unknown Mandatory Attribute). See Section 5.2.6.1 for its
definition.

One, two, or three octets of padding added so that the contents of the ERROR-CODE
attribute is 32-bit aligned. If the attribute is already 32-bit aligned, no padding is needed.

The Padding bits be set to zero by the sender and be ignored by the receiver.

Value Meaning

12 Unsupported Version

13 Incorrect Message Length

14 Generic Error

Table 5: Error Code meaning

MUST MUST

Unknown Type:

Reserved (R):

5.2.6.1. Error Specific Details for Error Code 4
The following is the format of the Error Specific Details field for Error Code 4.

These 7-bit fields contain the Types of the attributes (which were present in the
message that triggered the Error message) that were unknown to the receiver.

This bit is reserved. It be set to zero by the sender of the message and
be ignored by the receiver.

Figure 13: Unknown attributes format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Unknown Type|R| Unknown Type|R| Unknown Type|R| Unknown Type|R|
 +-+
 | |
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Unknown Type|R| Unknown Type|R|
 +-+
 | Unknown Type|R| Unknown Type|R|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MUST MUST

5.2.7. ERROR-INFO

The following is the format of the ERROR-INFO attribute.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 27

Text:

Padding:

This field contains UTF-8 encoded text .

In some situations, the contents of the Text field may be generated by an automaton. If this
automaton has information about the preferred language of the receiver of a particular
ERROR-INFO attribute, it use this language to generate the Text field.

One, two, or three octets of padding added so that the contents of the ERROR-INFO
attribute is 32-bit aligned. The Padding bits be set to zero by the sender and be
ignored by the receiver. If the attribute is already 32-bit aligned, no padding is needed.

Figure 14: ERROR-INFO format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 1 1|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

[9]

MAY

MUST MUST

Text:

Padding:

5.2.8. PARTICIPANT-PROVIDED-INFO

The following is the format of the PARTICIPANT-PROVIDED-INFO attribute.

This field contains UTF-8 encoded text .

One, two, or three octets of padding added so that the contents of the PARTICIPANT-
PROVIDED-INFO attribute is 32-bit aligned. The Padding bits be set to zero by the sender
and be ignored by the receiver. If the attribute is already 32-bit aligned, no padding is
needed.

Figure 15: PARTICIPANT-PROVIDED-INFO format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 0 0|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

[9]

MUST
MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 28

Text:

Padding:

5.2.9. STATUS-INFO

The following is the format of the STATUS-INFO attribute.

This field contains UTF-8 encoded text .

In some situations, the contents of the Text field may be generated by an automaton. If this
automaton has information about the preferred language of the receiver of a particular
STATUS-INFO attribute, it use this language to generate the Text field.

One, two, or three octets of padding added so that the contents of the STATUS-INFO
attribute is 32-bit aligned. The Padding bits be set to zero by the sender and be
ignored by the receiver. If the attribute is already 32-bit aligned, no padding is needed.

Figure 16: STATUS-INFO format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 0 1|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

[9]

MAY

MUST MUST

Supp. Attr.:

5.2.10. SUPPORTED-ATTRIBUTES

The following is the format of the SUPPORTED-ATTRIBUTES attribute.

These fields contain the BFCP attribute types that are supported by the floor control
server. See Table 2 for the list of BFCP attributes.

Figure 17: SUPPORTED-ATTRIBUTES format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 1 0|M| Length | Supp. Attr. |R| Supp. Attr. |R|
 +-+
 | Supp. Attr. |R| Supp. Attr. |R| Supp. Attr. |R| Supp. Attr. |R|
 +-+
 | |
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 29

Reserved (R):

Padding:

This bit be set to zero upon transmission and be ignored upon
reception.

One, two, or three octets of padding added so that the contents of the SUPPORTED-
ATTRIBUTES attribute is 32-bit aligned. If the attribute is already 32-bit aligned, no padding is
needed.

The Padding bits be set to zero by the sender and be ignored by the receiver.

MUST MUST

MUST MUST

Primitive:

Padding:

5.2.11. SUPPORTED-PRIMITIVES

The following is the format of the SUPPORTED-PRIMITIVES attribute.

These fields contain the types of the BFCP messages that are supported by the floor
control server. See Table 1 for the list of BFCP primitives.

One, two, or three octets of padding added so that the contents of the SUPPORTED-
PRIMITIVES attribute is 32-bit aligned. If the attribute is already 32-bit aligned, no padding is
needed.

The Padding bits be set to zero by the sender and be ignored by the receiver.

Figure 18: SUPPORTED-PRIMITIVES format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 1 1|M| Length | Primitive | Primitive |
 +-+
 | Primitive | Primitive | Primitive | Primitive |
 +-+
 | |
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

MUST MUST

5.2.12. USER-DISPLAY-NAME

The following is the format of the USER-DISPLAY-NAME attribute.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 30

Text:

Padding:

This field contains the UTF-8 encoded name of the user.

One, two, or three octets of padding added so that the contents of the USER-DISPLAY-
NAME attribute is 32-bit aligned. The Padding bits be set to zero by the sender and
be ignored by the receiver. If the attribute is already 32-bit aligned, no padding is needed.

Figure 19: USER-DISPLAY-NAME format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 0 0|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

MUST MUST

Text:

Padding:

5.2.13. USER-URI

The following is the format of the USER-URI attribute.

This field contains the UTF-8 encoded user's contact URI, that is, the URI used by the user
to set up the resources (e.g., media streams) that are controlled by BFCP. For example, in the
context of a conference set up by SIP, the USER-URI attribute would carry the SIP URI of the
user.

Messages containing a user's URI in a USER-URI attribute also contain the user's User
ID. This way, a client receiving such a message can correlate the user's URI (e.g., the
SIP URI the user used to join a conference) with the user's User ID.

Figure 20: USER-URI format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 0 1|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 31

One, two, or three octets of padding added so that the contents of the USER-URI attribute is 32-
bit aligned. The Padding bits be set to zero by the sender and be ignored by the
receiver. If the attribute is already 32-bit aligned, no padding is needed.

MUST MUST

Beneficiary ID:

5.2.14. BENEFICIARY-INFORMATION

The BENEFICIARY-INFORMATION attribute is a grouped attribute that consists of a header,
which is referred to as BENEFICIARY-INFORMATION-HEADER, followed by a sequence of
attributes. The following is the format of the BENEFICIARY-INFORMATION-HEADER:

This field contains a 16-bit value that uniquely identifies a user within a
conference.

The following is the ABNF (Augmented Backus-Naur Form) of the BENEFICIARY-
INFORMATION grouped attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
may be defined in the future.)

Figure 21: BENEFICIARY-INFORMATION-HEADER format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 1 0|M| Length | Beneficiary ID |
 +-+

[5]

Figure 22: BENEFICIARY-INFORMATION format

BENEFICIARY-INFORMATION = BENEFICIARY-INFORMATION-HEADER
 [USER-DISPLAY-NAME]
 [USER-URI]
 *EXTENSION-ATTRIBUTE

Floor Request ID:

5.2.15. FLOOR-REQUEST-INFORMATION

The FLOOR-REQUEST-INFORMATION attribute is a grouped attribute that consists of a header,
which is referred to as FLOOR-REQUEST-INFORMATION-HEADER, followed by a sequence of
attributes. The following is the format of the FLOOR-REQUEST-INFORMATION-HEADER:

Figure 23: FLOOR-REQUEST-INFORMATION-HEADER format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 1 1|M| Length | Floor Request ID |
 +-+

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 32

This field contains a 16-bit value that identifies a floor request at the floor control server.

The following is the ABNF of the FLOOR-REQUEST-INFORMATION grouped attribute.
(EXTENSION-ATTRIBUTE refers to extension attributes that may be defined in the future.)

Figure 24: FLOOR-REQUEST-INFORMATION format

FLOOR-REQUEST-INFORMATION = FLOOR-REQUEST-INFORMATION-HEADER
 [OVERALL-REQUEST-STATUS]
 1*FLOOR-REQUEST-STATUS
 [BENEFICIARY-INFORMATION]
 [REQUESTED-BY-INFORMATION]
 [PRIORITY]
 [PARTICIPANT-PROVIDED-INFO]
 *EXTENSION-ATTRIBUTE

Requested-by ID:

5.2.16. REQUESTED-BY-INFORMATION

The REQUESTED-BY-INFORMATION attribute is a grouped attribute that consists of a header,
which is referred to as REQUESTED-BY-INFORMATION-HEADER, followed by a sequence of
attributes. The following is the format of the REQUESTED-BY-INFORMATION-HEADER:

This field contains a 16-bit value that uniquely identifies a user within a
conference.

The following is the ABNF of the REQUESTED-BY-INFORMATION grouped attribute. (EXTENSION-
ATTRIBUTE refers to extension attributes that may be defined in the future.)

Figure 25: REQUESTED-BY-INFORMATION-HEADER format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 0 0 0|M| Length | Requested-by ID |
 +-+

Figure 26: REQUESTED-BY-INFORMATION format

REQUESTED-BY-INFORMATION = REQUESTED-BY-INFORMATION-HEADER
 [USER-DISPLAY-NAME]
 [USER-URI]
 *EXTENSION-ATTRIBUTE

5.2.17. FLOOR-REQUEST-STATUS

The FLOOR-REQUEST-STATUS attribute is a grouped attribute that consists of a header, which is
referred to as FLOOR-REQUEST-STATUS-HEADER, followed by a sequence of attributes. The
following is the format of the FLOOR-REQUEST-STATUS-HEADER:

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 33

Floor ID: this field contains a 16-bit value that uniquely identifies a floor within a conference.

The following is the ABNF of the FLOOR-REQUEST-STATUS grouped attribute. (EXTENSION-
ATTRIBUTE refers to extension attributes that may be defined in the future.)

Figure 27: FLOOR-REQUEST-STATUS-HEADER format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 0 0 1|M| Length | Floor ID |
 +-+

Figure 28: FLOOR-REQUEST-STATUS format

FLOOR-REQUEST-STATUS = FLOOR-REQUEST-STATUS-HEADER
 [REQUEST-STATUS]
 [STATUS-INFO]
 *EXTENSION-ATTRIBUTE

Floor Request ID:

5.2.18. OVERALL-REQUEST-STATUS

The OVERALL-REQUEST-STATUS attribute is a grouped attribute that consists of a header, which
is referred to as OVERALL-REQUEST-STATUS-HEADER, followed by a sequence of attributes. The
following is the format of the OVERALL-REQUEST-STATUS-HEADER:

This field contains a 16-bit value that identifies a floor request at the floor
control server.

The following is the ABNF of the OVERALL-REQUEST-STATUS grouped attribute. (EXTENSION-
ATTRIBUTE refers to extension attributes that may be defined in the future.)

Figure 29: OVERALL-REQUEST-STATUS-HEADER format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 0 1 0|M| Length | Floor Request ID |
 +-+

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 34

Figure 30: OVERALL-REQUEST-STATUS format

OVERALL-REQUEST-STATUS = OVERALL-REQUEST-STATUS-HEADER
 [REQUEST-STATUS]
 [STATUS-INFO]
 *EXTENSION-ATTRIBUTE

5.3. Message Format
This section contains the normative ABNF (Augmented Backus-Naur Form) of the BFCP
messages. Extension attributes that may be defined in the future are referred to as EXTENSION-
ATTRIBUTE in the ABNF.

[5]

5.3.1. FloorRequest

Floor participants request a floor by sending a FloorRequest message to the floor control server.
The following is the format of the FloorRequest message:

Figure 31: FloorRequest format

FloorRequest = COMMON-HEADER
 1*FLOOR-ID
 [BENEFICIARY-ID]
 [PARTICIPANT-PROVIDED-INFO]
 [PRIORITY]
 *EXTENSION-ATTRIBUTE

5.3.2. FloorRelease

Floor participants release a floor by sending a FloorRelease message to the floor control server.
Floor participants also use the FloorRelease message to cancel pending floor requests. The
following is the format of the FloorRelease message:

Figure 32: FloorRelease format

FloorRelease = COMMON-HEADER
 FLOOR-REQUEST-ID
 *EXTENSION-ATTRIBUTE

5.3.3. FloorRequestQuery

Floor participants and floor chairs request information about a floor request by sending a
FloorRequestQuery message to the floor control server. The following is the format of the
FloorRequestQuery message:

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 35

Figure 33: FloorRequestQuery format

FloorRequestQuery = COMMON-HEADER
 FLOOR-REQUEST-ID
 *EXTENSION-ATTRIBUTE

5.3.4. FloorRequestStatus

The floor control server informs floor participants and floor chairs about the status of their floor
requests by sending them FloorRequestStatus messages. The following is the format of the
FloorRequestStatus message:

Figure 34: FloorRequestStatus format

FloorRequestStatus = COMMON-HEADER
 FLOOR-REQUEST-INFORMATION
 *EXTENSION-ATTRIBUTE

5.3.5. UserQuery

Floor participants and floor chairs request information about a participant and the floor
requests related to this participant by sending a UserQuery message to the floor control server.
The following is the format of the UserQuery message:

Figure 35: UserQuery format

UserQuery = COMMON-HEADER
 [BENEFICIARY-ID]
 *EXTENSION-ATTRIBUTE

5.3.6. UserStatus

The floor control server provides information about participants and their related floor requests
to floor participants and floor chairs by sending them UserStatus messages. The following is the
format of the UserStatus message:

Figure 36: UserStatus format

UserStatus = COMMON-HEADER
 [BENEFICIARY-INFORMATION]
 *FLOOR-REQUEST-INFORMATION
 *EXTENSION-ATTRIBUTE

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 36

5.3.7. FloorQuery

Floor participants and floor chairs request information about a floor or floors by sending a
FloorQuery message to the floor control server. The following is the format of the FloorQuery
message:

Figure 37: FloorQuery format

FloorQuery = COMMON-HEADER
 *FLOOR-ID
 *EXTENSION-ATTRIBUTE

5.3.8. FloorStatus

The floor control server informs floor participants and floor chairs about the status (e.g., the
current holder) of a floor by sending them FloorStatus messages. The following is the format of
the FloorStatus message:

Figure 38: FloorStatus format

FloorStatus = COMMON-HEADER
 *FLOOR-ID
 *FLOOR-REQUEST-INFORMATION
 *EXTENSION-ATTRIBUTE

5.3.9. ChairAction

Floor chairs send instructions to floor control servers by sending them ChairAction messages.
The following is the format of the ChairAction message:

Figure 39: ChairAction format

ChairAction = COMMON-HEADER
 FLOOR-REQUEST-INFORMATION
 *EXTENSION-ATTRIBUTE

5.3.10. ChairActionAck

Floor control servers confirm that they have accepted a ChairAction message by sending a
ChairActionAck message. The following is the format of the ChairActionAck message:

Figure 40: ChairActionAck format

ChairActionAck = COMMON-HEADER
 *EXTENSION-ATTRIBUTE

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 37

5.3.14. FloorRequestStatusAck

When communicating over an unreliable transport, floor participants and chairs acknowledge
the receipt of a subsequent FloorRequestStatus message from the floor control server (cf. Section
13.1.2) by sending a FloorRequestStatusAck message. The following is the format of the
FloorRequestStatusAck message:

5.3.11. Hello

Floor participants and floor chairs check the liveness of floor control servers by sending a
Hello message. Additionally, clients communicating with a floor control server over an unreliable
transport use the Hello message to initiate communication with the server. The following is the
format of the Hello message:

MAY

Figure 41: Hello format

Hello = COMMON-HEADER
 *EXTENSION-ATTRIBUTE

5.3.12. HelloAck

Floor control servers confirm that they are alive on reception of a Hello message by sending a
HelloAck message. The following is the format of the HelloAck message:

Figure 42: HelloAck format

HelloAck = COMMON-HEADER
 SUPPORTED-PRIMITIVES
 SUPPORTED-ATTRIBUTES
 *EXTENSION-ATTRIBUTE

5.3.13. Error

Floor control servers inform floor participants and floor chairs about errors processing requests
by sending them Error messages. The following is the format of the Error message:

Figure 43: Error format

Error = COMMON-HEADER
 ERROR-CODE
 [ERROR-INFO]
 *EXTENSION-ATTRIBUTE

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 38

5.3.15. FloorStatusAck

When communicating over an unreliable transport, floor participants and chairs acknowledge
the receipt of a subsequent FloorStatus message from the floor control server (cf. Section 13.5.2)
by sending a FloorStatusAck message. The following is the format of the FloorStatusAck message:

5.3.16. Goodbye

BFCP entities communicating over an unreliable transport that wish to dissociate themselves
from their remote participant do so through the transmission of a Goodbye. The following is the
format of the Goodbye message:

5.3.17. GoodbyeAck

BFCP entities communicating over an unreliable transport acknowledge the receipt of a Goodbye
message from a peer. The following is the format of the GoodbyeAck message:

Figure 44: FloorRequestStatusAck format

FloorRequestStatusAck = (COMMON-HEADER)
 *EXTENSION-ATTRIBUTE

Figure 45: FloorStatusAck format

FloorStatusAck = (COMMON-HEADER)
 *EXTENSION-ATTRIBUTE

Figure 46: Goodbye format

Goodbye = (COMMON-HEADER)
 *EXTENSION-ATTRIBUTE

Figure 47: GoodbyeAck format

GoodbyeAck = (COMMON-HEADER)
 *EXTENSION-ATTRIBUTE

6. Transport
The transport over which BFCP entities exchange messages depends on the information the
clients obtain for contacting the floor control server, as described in Section 3.2. Two transports
are supported: TCP, which is appropriate where connectivity is not impeded by network
elements such as NAT devices or media relays; and UDP for those deployments where TCP may
not be applicable or appropriate.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 39

Note: In practice, products are configured to try one transport first and then use the
other transport as a fallback. Whether TCP or UDP is chosen as underlying transport
depends on the type of product and the deployment environment. See Appendix B
for additional considerations.

6.1. Reliable Transport
BFCP entities may elect to exchange BFCP messages using TCP connections. TCP provides an in-
order reliable delivery of a stream of bytes. Consequently, message framing needs to be
implemented in the application layer. BFCP implements application-layer framing using TLV-
encoded attributes.

A client use more than one TCP connection to communicate with a given floor control
server within a conference. Nevertheless, if the same physical box handles different clients (e.g.,
a floor chair and a floor participant), which are identified by different User IDs, a separate
connection per client is allowed.

If a BFCP entity (a client or a floor control server) receives data that cannot be parsed, the entity
 close the TCP connection, and the connection be reestablished. Similarly, if a TCP

connection cannot deliver a BFCP message and times out or receives an ICMP port unreachable
message mid-connection, the TCP connection be reestablished.

The way connection reestablishment is handled depends on how the client obtains information
to contact the floor control server. Once the TCP connection is reestablished, the client
resend those messages for which it did not get a response from the floor control server.

If a floor control server detects that the TCP connection towards one of the floor participants is
lost, it is up to the local policy of the floor control server what to do with the pending floor
requests of the floor participant. In any case, it is that the floor control server
keep the floor requests (i.e., that it does not cancel them) while the TCP connection is
reestablished.

If a client wishes to end its BFCP connection with a floor control server, the client closes (i.e., a
graceful close) the TCP connection towards the floor control server. If a floor control server
wishes to end its BFCP connection with a client (e.g., the focus of the conference informs the floor
control server that the client has been kicked out of the conference), the floor control server
closes (i.e., a graceful close) the TCP connection towards the client.

In cases where a BFCP entity reestablishes a connection due to protocol errors as described
above, the entity repeatedly reestablish the connection. Rather, if the same protocol
errors persist, the entity cease attempts and report the error to the human user
and/or log the event. This does not preclude the entity from reestablishing a connection when
facing a different set of errors. That said, entities avoid overloading the server with
reestablishment requests. A connection be reestablished too frequently. The frequency
is a matter of implementation, but be attempted more than once in a 30 second
period of time.

MUST NOT

MUST SHOULD

SHOULD

MAY

RECOMMENDED

SHOULD NOT
MUST SHOULD

MUST
MUST NOT

SHOULD NOT

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 40

6.2. Unreliable Transport
BFCP entities may elect to exchange BFCP messages using UDP datagrams. UDP is an unreliable
transport where neither delivery nor ordering is assured. Each BFCP UDP datagram
contain exactly one BFCP message or message fragment. To keep large BFCP messages from being
fragmented at the IP layer, the fragmentation of BFCP messages that exceed the path MTU size is
performed at the BFCP level. Considerations related to fragmentation are covered in Section
6.2.3. The message format for BFCP messages is the same regardless of whether the messages are
sent in UDP datagrams or over a TCP stream.

Clients announce their presence to the floor control server by sending a Hello message. The
floor control server responds to the Hello message with a HelloAck message. The client considers
the floor control server as present and available only upon receiving the HelloAck message. The
behavior when timers fire, including the determination that a connection is broken, is described
in Section 8.3.

As described in Section 8, each request sent by a floor participant or chair forms a client
transaction that expects an acknowledgement message from the floor control server within a
transaction failure window. Concordantly, messages sent by the floor control server that initiate
new transactions (e.g., FloorStatus announcements as part of a FloorQuery subscription) require
acknowledgement messages from the floor participant and chair entities to which they were
sent.

If a floor control server receives data that cannot be parsed, the receiving server send an
Error message with parameter value 10 (Unable to Parse Message) indicating receipt of a
malformed message, given that it is possible to parse the received message to such an extent that
an Error message may be built.

Entities have at most one outstanding request transaction per peer at any one time.
Implicit subscriptions occur for a client-initiated request transaction whose acknowledgement is
implied by the first server-initiated response for that transaction, followed by zero of more
subsequent server-initiated messages corresponding to the same transaction. An example is a
FloorRequest message for which there are potentially multiple responses from the floor control
server as it processes intermediate states until a terminal state (e.g., Granted or Denied) is
attained. The subsequent changes in state for the request are new transactions whose
Transaction ID is determined by the floor control server and whose receipt by the client
participant is acknowledged with a FloorRequestStatusAck message.

By restricting entities to having at most one pending transaction open in a BFCP connection, both
the out-of-order receipt of messages as well as the possibility for congestion are mitigated.
Additional details regarding congestion control are provided in Section 6.2.1. If a participant
receives a server-initiated request (e.g., a FloorStatus from the floor control server) while waiting
for a response to a client-initiated transaction (e.g., the participant sent a FloorRequest and is
waiting for a FloorRequestStatus response), then the participant treat the server-initiated

MUST

MUST

MUST

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 41

request as superseding any response to its client-initiated transaction. As the floor control server
cannot send a second update to the implicit floor status subscription until the first is
acknowledged, ordinality is maintained.

If a client wishes to end its BFCP connection with a floor control server, it is that the
client send a Goodbye message to dissociate itself from any allocated resources. If a floor control
server wishes to end its BFCP connection with a client (e.g., the focus of the conference informs
the floor control server that the client has been kicked out from the conference), it is
that the floor control server send a Goodbye message towards the client.

REQUIRED

REQUIRED

6.2.1. Congestion Control

BFCP may be characterized as generating "low data-volume" traffic, per the classification in .
Nevertheless, it is necessary to ensure that suitable and necessary congestion control
mechanisms are used for BFCP over UDP. As described in Section 6.2, within the same BFCP
connection, every entity -- client or server -- is only allowed to send one request at a time, and
await the acknowledging response. This way, at most one datagram is sent per RTT given the
message is not lost during transmission. If the message is lost, the request retransmission timer
T1 specified in Section 8.3.1 will fire, and the message is retransmitted up to three times, in
addition to the original transmission of the message. The default initial interval be set to
500 ms, but is adjusted dynamically as described in Section 8.3.1. The interval be doubled
after each retransmission attempt. This is similar to the specification of the timer A and its initial
value T1 in SIP as described in , except that the value of T1 in this protocol
is not fixed from one transaction to another.

[15]

MUST
MUST

Section 17.1.1.2 of [20]

6.2.2. ICMP Error Handling

ICMP is not usable when BFCP is running over an unreliable transport due to risks associated
with off-path attacks. Any ICMP messages associated with BFCP running over an unreliable
transport be ignored.MUST

6.2.3. Fragmentation Handling

When using UDP, a single BFCP message could be fragmented at the IP layer if its overall size
exceeds the path MTU of the network. To avoid this happening at the IP layer, a fragmentation
scheme for BFCP is defined below.

BFCP is designed for achieving small message size, due to the binary encoding as described in
Section 1. The fragmentation scheme is therefore deliberately kept simple and straightforward,
since the probability of fragmentation of BFCP messages is small. By design, the fragmentation
scheme does not acknowledge individual BFCP message fragments. The whole BFCP message is
acknowledged if received completely.

BFCP entities consider the path MTU size available between the sender and the receiver
and run MTU discovery, such as described in , , and , for this purpose.

When transmitting a BFCP message with a size greater than the path MTU, the sender
fragment the message into a series of N contiguous data ranges. The size of each of these N
messages be smaller than the path MTU to help prevent fragmentation overlap attacks. The

SHOULD
MAY [25] [26] [27]

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc3261#section-17.1.1.2

value for N is defined as ceil((message size -- COMMON-HEADER size) / (path MTU size --
COMMON-HEADER size)), where ceil is the integer ceiling function, and the COMMON-HEADER
size includes the Fragment Offset and Fragment Length fields. The sender then creates N BFCP
fragment messages (one for each data range) with the same Transaction ID. The size of each of
these N messages, with the COMMON-HEADER included, be smaller than the path MTU.
The F flag in the COMMON-HEADER in all the fragments is set to indicate fragmentation of the
BFCP message.

For each of these fragments, the Fragment Offset and Fragment Length fields are included in the
COMMON-HEADER. The Fragment Offset field denotes the number of 4-octet units contained in
the previous fragments, excluding the COMMON-HEADER. The Fragment Length contains the
length of the fragment itself, also excluding the COMMON-HEADER. Note that the Payload Length
field contains the length of the entire, unfragmented message.

When a BFCP implementation receives a BFCP message fragment, it buffer the fragment
until either it has received the entire BFCP message, or until the Response Retransmission Timer
expires. The state machine should handle the BFCP message only after all the fragments of the
message have been received.

If a fragment of a BFCP message is lost, the sender will not receive an acknowledgement for the
message. Therefore the sender will retransmit the message with same transaction ID as specified
in Section 8.3. If the acknowledgement message sent by the receiver is lost, then the entire
message will be resent by the sender. The receiver then retransmit the acknowledgement.
The receiver discard an incomplete buffer utilizing the Response Retransmission Timer,
starting the timer after the receipt of the first fragment.

A Denial of Service (DoS) attack utilizing the fragmentation scheme described above
is mitigated by the fact that the Response Retransmission Timer is started after
receipt of the first BFCP message fragment. In addition, the Payload Length field can
be compared with the Fragment Offset and Fragment Length fields to verify the
message fragments as they arrive. To make DoS attacks with spoofed IP addresses
difficult, BFCP entities use the cookie exchange mechanism in DTLS .

When deciding the size of the message fragment based on path MTU, the BFCP fragmentation
handling should take into account how the DTLS record framing expands the datagram size as
described in .

MUST

MUST

MUST
MAY

SHOULD [8]

Section 4.1.1.1 of [8]

6.2.4. NAT Traversal

One of the key benefits of using UDP for BFCP communication is the ability to leverage the
existing NAT traversal infrastructure and strategies deployed to facilitate transport of the media
associated with the video conferencing sessions. Depending on the given deployment, this
infrastructure typically includes some subset of Interactive Connectivity Establishment (ICE) .[16]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 43

https://www.rfc-editor.org/rfc/rfc6347#section-4.1.1.1

In order to facilitate the initial establishment of NAT bindings, and to maintain those bindings
once established, BFCP entities using an unreliable transport are to use STUN

 Binding Indication for keepalives, as described for ICE . provides
useful recommendations for middlebox interaction when DTLS is used.

Informational note: Since the version number is set to 2 when BFCP is used over an
unreliable transport, cf. the Ver field in Section 5.1, it is straightforward to
distinguish between STUN and BFCP packets even without checking the STUN magic
cookie .

In order to facilitate traversal of BFCP packets through NATs, BFCP entities using an unreliable
transport are to use symmetric ports for sending and receiving BFCP packets, as
recommended for RTP/RTP Control Protocol (RTCP) .

RECOMMENDED
[14] [16] Section 6.7 of [28]

[14]

RECOMMENDED
[13]

7. Lower-Layer Security
BFCP relies on lower-layer security mechanisms to provide replay and integrity protection and
confidentiality. BFCP floor control servers and clients (which include both floor participants and
floor chairs) support TLS for transport over TCP and support DTLS for
transport over UDP. Any BFCP entity support other security mechanisms.

BFCP entities support, at a minimum, the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite
 for backwards compatibility with existing implementations of RFC 4582. In accordance with

the recommendations and guidelines in , BFCP entities support the following cipher
suites:

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

MUST [11] MUST [8]
MAY

MUST
[7]

[30] SHOULD

•
•
•
•

8. Protocol Transactions
In BFCP, there are two types of transactions: client-initiated transactions and server-initiated
transactions.

Client-initiated transactions consist of a request from a client to a floor control server and a
response from the floor control server to the client.

Server-initiated transactions have different requirements and behavior depending on underlying
transport:

When using a reliable transport, server-initiated transactions consist of a single message
from a floor control server to a client (notifications). They do not trigger any response.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 44

https://www.rfc-editor.org/rfc/rfc5763#section-6.7

When using an unreliable transport, server-initiated transactions consist of a request from a
floor control server to a client and a response from the client to the floor control server.

When using BFCP over an unreliable transport, retransmission timer T1 (see Section 8.3)
be used for all requests until the transaction is completed. Note that while T1 varies over time, it
remains constant for the duration of a given transaction and is only updated at the completion of
a transaction.

MUST

8.1. Client Behavior
A client starting a client-initiated transaction set the Conference ID in the COMMON-
HEADER of the message to the Conference ID for the conference that the client obtained
previously.

The client set the Transaction ID value in the COMMON-HEADER to a number that is
different from 0 and that be reused in another message from the client until a
response from the server is received for the transaction. The client uses the Transaction ID value
to match this message with the response from the floor control server. When using BFCP over an
unreliable transport, it is important to choose a Transaction ID value that lets the receiver
distinguish the reception of the next message in a sequence of BFCP messages from a
retransmission of a previous message. Therefore, BFCP entities using an unreliable transport

 use monotonically increasing Transaction ID values (except for wrap-around).

A client receiving a server-initiated transaction over an unreliable transport copy the
Transaction ID from the request received from the server into the response.

MUST

MUST
MUST NOT

MUST

MUST

8.2. Server Behavior
A floor control server sending a response within a client-initiated transaction copy the
Conference ID, the Transaction ID, and the User ID from the request received from the client into
the response.

Server-initiated transactions contain a Transaction ID equal to zero when BFCP is used
over a reliable transport. Over an unreliable transport, the Transaction ID shall have the same
properties as for client-initiated transactions. The server uses the Transaction ID value to match
this message with the response from the floor participant or floor chair.

MUST

MUST

8.3. Timers
When BFCP entities are communicating over an unreliable transport, two retransmission timers
are employed to help mitigate the loss of datagrams. Retransmission and response caching are
not required when BFCP entities communicate over a reliable transport.

8.3.1. Request Retransmission Timer, T1

T1 is a timer that schedules retransmission of a request until an appropriate response is received
or until the maximum number of retransmissions has occurred. The timer is computed using the
smoothed round-trip time algorithm defined in with an initial retransmission timeout (RTO)[2]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 45

value of 500 ms and clock granularity (G) of 100 ms. In contrast to step 2.4 of , if
the computed value of RTO is less than 500 ms, then RTO shall be set to 500 ms. Timer T1 be
adjusted with the reception of a response to each request transmitted in order to compute an
accurate RTO value, which is the effective T1 value. The RTT value R is the time in milliseconds
from the time when a request is transmitted to the time the initial response to that request is
received. Responses to retransmitted packets be used to recompute the RTO value, as
one cannot determine if a response is to an initial or retransmitted request. If T1 always expires
on the initial transmission of a new request, this would suggest the recommended initial T1 (and
RTO) value is too low and be increased by doubling the initial values of T1 (and RTO)
until T1 does not expire when sending a new request.

When retransmitting a request, timer T1 is doubled with each retransmission, failing after three
unacknowledged retransmission attempts.

If a valid response is not received for a client- or server-initiated transaction, the implementation
 consider the BFCP connection as broken. Implementations follow the

reestablishment procedure described in Section 6.

Section 2 of [2]
MUST

MUST NOT

SHOULD

MUST SHOULD

8.3.2. Response Retransmission Timer, T2

T2 is a timer that, when fired, signals that the BFCP entity can release knowledge of the
transaction against which it is running. It is started upon the first transmission of the response to
a request and is the only mechanism by which that response is released by the BFCP entity. Any
subsequent retransmissions of the same request can be responded to by replaying the cached
response, while that value is retained until the timer has fired. Refer to Section 6.2.3 for this
timer's role in the fragmentation handling scheme.

8.3.3. Timer Values

The table below defines the different timers required when BFCP entities communicate over an
unreliable transport.

The initial value for T1 is 500 ms, which is an estimate of the RTT for completing the transaction.
Computation of this value follows the procedures described in Section 8.3.1, which includes
exponential backoffs on retransmissions.

T2 be set such that it encompasses all legal retransmissions per T1 plus a factor to
accommodate network latency between BFCP entities, processing delays, etc.

Timer Description Value/s

T1 Initial request retransmission timer 0.5 s (initial)

T2 Response retransmission timer (T1*24)*1.25

Table 6: Timers

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc6298#section-2

9. Authentication and Authorization
BFCP clients authenticate the floor control server before sending any BFCP message to it
or accepting any BFCP message from it. Similarly, floor control servers authenticate a
client before accepting any BFCP message from it or sending any BFCP message to it.

If the signaling or control protocol traffic used to set up the conference is authenticated and
confidentiality and integrity protected, and the extensions in this document are supported, the
BFCP clients authenticate the floor control server, and the floor control servers
authenticate the client before communicating as described above. Note that BFCP entities
supporting only the subset may not comply with this mandatory authentication requirement.

BFCP supports TLS/DTLS mutual authentication between clients and floor control servers, as
specified in Section 9.1. This is the authentication mechanism in BFCP.

Note that future extensions may define additional authentication mechanisms.

In addition to authenticating BFCP messages, floor control servers need to authorize them. On
receiving an authenticated BFCP message, the floor control server checks whether the client
sending the message is authorized. If the client is not authorized to perform the operation being
requested, the floor control server generates an Error message, as described in Section 13.8, with
an error code with a value of 5 (Unauthorized Operation). Messages from a client that cannot be
authorized be processed further.

SHOULD
SHOULD

MUST MUST

[3]

RECOMMENDED

MUST NOT

9.1. TLS/DTLS Based Mutual Authentication
BFCP supports TLS/DTLS based mutual authentication between clients and floor control servers.
If TLS/DTLS is used, an initial integrity-protected channel is between the client and the
floor control server that can be used to exchange their certificates (which be self-signed
certificates) or, more commonly, the fingerprints of these certificates. These certificates are used
at TLS/DTLS establishment time.

The implementation of such an integrity-protected channel using SIP and the SDP
offer/answer model is described in .

BFCP messages received over an authenticated TLS/DTLS connection are considered
authenticated. A floor control server that receives a BFCP message over TCP/UDP (no TLS/DTLS)

 request the use of TLS/DTLS by generating an Error message, as described in Section 13.8,
with an error code with a value of 9 (Use TLS) or a value of 11 (Use DTLS) respectively. Clients
configured to require the use of TLS/DTLS ignore unauthenticated messages.

Note that future extensions may define additional authentication mechanisms that may not
require an initial integrity-protected channel (e.g., authentication based on certificates signed by
a certificate authority).

REQUIRED
MAY

[12]

MAY

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 47

As described in Section 9, floor control servers need to perform authorization before processing
any message. In particular, the floor control server check that messages arriving over a
given authenticated TLS/DTLS connection use an authorized User ID (i.e., a User ID that the user
that established the authenticated TLS/DTLS connection is allowed to use).

MUST

10. Floor Participant Operations
This section specifies how floor participants can perform different operations, such as requesting
a floor, using the protocol elements described in earlier sections. Section 11 specifies operations
that are specific to floor chairs, such as instructing the floor control server to grant or revoke a
floor, and Section 12 specifies operations that can be performed by any client (i.e., both floor
participants and floor chairs).

10.1. Requesting a Floor
A floor participant that wishes to request one or more floors does so by sending a FloorRequest
message to the floor control server.

10.1.1. Sending a FloorRequest Message

The ABNF in Section 5.3.1 describes the attributes that a FloorRequest message can contain. In
addition, the ABNF specifies normatively which of these attributes are mandatory, and which
ones are optional.

The floor participant sets the Conference ID and the Transaction ID in the COMMON-HEADER
following the rules given in Section 8.1.

The floor participant sets the User ID in the COMMON-HEADER to the floor participant's
identifier. If the sender of the FloorRequest message (identified by the User ID) is not the
participant that would eventually get the floor (i.e., a third-party floor request), the sender

 add a BENEFICIARY-ID attribute to the message identifying the beneficiary of the floor.

Note that the namespace for both the User ID and the Beneficiary ID is the same.
That is, a given participant is identified by a single 16-bit value that can be used in
the User ID in the COMMON-HEADER and in several attributes: BENEFICIARY-ID,
BENEFICIARY-INFORMATION, and REQUESTED-BY-INFORMATION.

The floor participant insert at least one FLOOR-ID attribute in the FloorRequest message. If
the client inserts more than one FLOOR-ID attribute, the floor control server will treat all the
floor requests as an atomic package. That is, the floor control server will either grant or deny all
the floors in the FloorRequest message.

The floor participant may use a PARTICIPANT-PROVIDED-INFO attribute to state the reason why
the floor or floors are being requested. The Text field in the PARTICIPANT-PROVIDED-INFO
attribute is intended for human consumption.

SHOULD

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 48

The floor participant may request that the server handle the floor request with a certain priority
using a PRIORITY attribute.

10.1.2. Receiving a Response

A message from the floor control server is considered a response to the FloorRequest message if
the message from the floor control server has the same Conference ID, Transaction ID, and User
ID as the FloorRequest message, as described in Section 8.1. On receiving such a response, the
floor participant follows the rules in Section 9 that relate to floor control server authentication.

The successful processing of a FloorRequest message at the floor control server involves
generating one or several FloorRequestStatus messages. The floor participant obtains a Floor
Request ID in the Floor Request ID field of a FLOOR-REQUEST-INFORMATION attribute in the first
FloorRequestStatus message from the floor control server. Subsequent FloorRequestStatus
messages from the floor control server regarding the same floor request will carry the same
Floor Request ID in a FLOOR-REQUEST-INFORMATION attribute as the initial FloorRequestStatus
message. This way, the floor participant can associate subsequent incoming FloorRequestStatus
messages with the ongoing floor request.

The floor participant obtains information about the status of the floor request in the FLOOR-
REQUEST-INFORMATION attribute of each of the FloorRequestStatus messages received from the
floor control server. This attribute is a grouped attribute, and as such it includes a number of
attributes that provide information about the floor request.

The OVERALL-REQUEST-STATUS attribute provides information about the overall status of the
floor request. If the Request Status value is Granted, all the floors that were requested in the
FloorRequest message have been granted. If the Request Status value is Denied, all the floors that
were requested in the FloorRequest message have been denied. A floor request is considered to
be ongoing while it is in the Pending, Accepted, or Granted states. If the floor request value is
unknown, then the response is still processed. However, no meaningful value can be reported to
the user.

The STATUS-INFO attribute, if present, provides extra information that the floor participant can
display to the user.

The FLOOR-REQUEST-STATUS attributes provide information about the status of the floor request
as it relates to a particular floor. The STATUS-INFO attribute, if present, provides extra
information that the floor participant can display to the user.

The BENEFICIARY-INFORMATION attribute identifies the beneficiary of the floor request in third-
party floor requests. The REQUESTED-BY-INFORMATION attribute need not be present in
FloorRequestStatus messages received by the floor participant that requested the floor, as this
floor participant is already identified by the User ID in the COMMON-HEADER.

The PRIORITY attribute, when present, contains the priority that was requested by the generator
of the FloorRequest message.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 49

If the response is an Error message, the floor control server could not process the FloorRequest
message for some reason, which is described in the Error message.

10.1.3. Reception of a Subsequent FloorRequestStatus Message

When communicating over an unreliable transport and upon receiving a FloorRequestStatus
message from a floor control server, the participant respond with a FloorRequestStatusAck
message within the transaction failure window to complete the transaction.

MUST

10.2. Cancelling a Floor Request and Releasing a Floor
A floor participant that wishes to cancel an ongoing floor request does so by sending a
FloorRelease message to the floor control server. The FloorRelease message is also used by floor
participants that hold a floor and would like to release it.

10.2.1. Sending a FloorRelease Message

The ABNF in Section 5.3.2 describes the attributes that a FloorRelease message can contain. In
addition, the ABNF specifies normatively which of these attributes are mandatory, and which
ones are optional.

The floor participant sets the Conference ID and the Transaction ID in the COMMON-HEADER
following the rules given in Section 8.1. The floor participant sets the User ID in the COMMON-
HEADER to the floor participant's identifier.

Note that the FloorRelease message is used to release a floor or floors that were
granted and to cancel ongoing floor requests (from the protocol perspective, both
are ongoing floor requests). Using the same message in both situations helps resolve
the race condition that occurs when the FloorRelease message and the FloorGrant
message cross each other on the wire.

The floor participant uses the FLOOR-REQUEST-ID that was received in the response to the
FloorRequest message that the FloorRelease message is cancelling.

Note that if the floor participant requested several floors as an atomic operation
(i.e., in a single FloorRequest message), all the floors are released as an atomic
operation as well (i.e., all are released at the same time).

10.2.2. Receiving a Response

A message from the floor control server is considered a response to the FloorRelease message if
the message from the floor control server has the same Conference ID, Transaction ID, and User
ID as the FloorRelease message, as described in Section 8.1. On receiving such a response, the
floor participant follows the rules in Section 9 that relate to floor control server authentication.

If the response is a FloorRequestStatus message, the Request Status value in the OVERALL-
REQUEST-STATUS attribute (within the FLOOR-REQUEST-INFORMATION grouped attribute) will
be Cancelled or Released.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 50

If the response is an Error message, the floor control server could not process the FloorRequest
message for some reason, which is described in the Error message.

It is possible that the FloorRelease message crosses on the wire with a FloorRequestStatus
message from the server with a Request Status different from Cancelled or Released. In any case,
such a FloorRequestStatus message will not be a response to the FloorRelease message, as its
Transaction ID will not match that of the FloorRelease.

11. Chair Operations
This section specifies how floor chairs can instruct the floor control server to grant or revoke a
floor using the protocol elements described in earlier sections.

Floor chairs that wish to send instructions to a floor control server do so by sending a
ChairAction message.

11.1. Sending a ChairAction Message
The ABNF in Section 5.3.9 describes the attributes that a ChairAction message can contain. In
addition, the ABNF specifies normatively which of these attributes are mandatory, and which
ones are optional.

The floor chair sets the Conference ID and the Transaction ID in the COMMON-HEADER following
the rules given in Section 8.1. The floor chair sets the User ID in the COMMON-HEADER to the
floor chair's identifier.

The ChairAction message contains instructions that apply to one or more floors within a
particular floor request. The floor or floors are identified by the FLOOR-REQUEST-STATUS
attributes and the floor request is identified by the FLOOR-REQUEST-INFORMATION-HEADER,
which are carried in the ChairAction message.

For example, if a floor request consists of two floors that depend on different floor chairs, each
floor chair will grant its floor within the floor request. Once both chairs have granted their floor,
the floor control server will grant the floor request as a whole. On the other hand, if one of the
floor chairs denies its floor, the floor control server will deny the floor request as a whole,
regardless of the other floor chair's decision.

The floor chair provides the new status of the floor request as it relates to a particular floor using
a FLOOR-REQUEST-STATUS attribute. If the new status of the floor request is Accepted, the floor
chair use the Queue Position field to provide a queue position for the floor request. If the
floor chair does not wish to provide a queue position, all the bits of the Queue Position field
be set to zero. The floor chair use the Status Revoked to revoke a floor that was granted
(i.e., Granted status) and use the Status Denied to reject floor requests in any other status
(e.g., Pending and Accepted).

MAY
MUST

MUST
MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 51

The floor chair add an OVERALL-REQUEST-STATUS attribute to the ChairAction message to
provide a new overall status for the floor request. If the new overall status of the floor request is
Accepted, the floor chair can use the Queue Position field to provide a queue position for the
floor request.

Note that a particular floor control server can implement a different queue for each
floor containing all the floor requests that relate to that particular floor, a general
queue for all floor requests, or both. Also note that a floor request can involve
several floors and that a ChairAction message can only deal with a subset of these
floors (e.g., if a single floor chair is not authorized to manage all the floors). In this
case, the floor control server will combine the instructions received from the
different floor chairs in FLOOR-REQUEST-STATUS attributes to come up with the
overall status of the floor request.

Note that, while the action of a floor chair may communicate information in the
OVERALL-REQUEST-STATUS attribute, the floor control server may override, modify,
or ignore this field's content.

The floor chair include STATUS-INFO attributes to state the reason why the floor or floors
are being accepted, granted, or revoked. The Text in the STATUS-INFO attribute is intended for
human consumption.

MAY

MAY

11.2. Receiving a Response
A message from the floor control server is considered a response to the ChairAction message if
the message from the server has the same Conference ID, Transaction ID, and User ID as the
ChairAction message, as described in Section 8.1. On receiving such a response, the floor chair
follows the rules in Section 9 that relate to floor control server authentication.

A ChairActionAck message from the floor control server confirms that the floor control server
has accepted the ChairAction message. An Error message indicates that the floor control server
could not process the ChairAction message for some reason, which is described in the Error
message.

12. General Client Operations
This section specifies operations that can be performed by any client. That is, they are not
specific to floor participants or floor chairs. They can be performed by both.

12.1. Requesting Information about Floors
A client can obtain information about the status of a floor or floors in different ways, which
include using BFCP and using out-of-band mechanisms. Clients using BFCP to obtain such
information use the procedures described in this section.

Clients request information about the status of one or several floors by sending a FloorQuery
message to the floor control server.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 52

12.1.1. Sending a FloorQuery Message

The ABNF in Section 5.3.7 describes the attributes that a FloorQuery message can contain. In
addition, the ABNF specifies normatively which of these attributes are mandatory, and which
ones are optional.

The client sets the Conference ID and the Transaction ID in the COMMON-HEADER following the
rules given in Section 8.1. The client sets the User ID in the COMMON-HEADER to the client's
identifier.

The client inserts in the message all the Floor IDs it wants to receive information about. The floor
control server will send periodic information about all of these floors. If the client does not want
to receive information about a particular floor any longer, it sends a new FloorQuery message
removing the FLOOR-ID of this floor. If the client does not want to receive information about any
floor any longer, it sends a FloorQuery message with no FLOOR-ID attribute.

12.1.2. Receiving a Response

A message from the floor control server is considered a response to the FloorQuery message if
the message from the floor control server has the same Conference ID, Transaction ID, and User
ID as the FloorQuery message, as described in Section 8.1. On receiving such a response, the
client follows the rules in Section 9 that relate to floor control server authentication.

On reception of the FloorQuery message, the floor control server respond with a
FloorStatus message or with an Error message. If the response is a FloorStatus message, it will
contain information about one of the floors the client requested information about. If the client
did not include any FLOOR-ID attribute in its FloorQuery message (i.e., the client does not want to
receive information about any floor any longer), the FloorStatus message from the floor control
server will not include any FLOOR-ID attribute either.

FloorStatus messages that carry information about a floor contain a FLOOR-ID attribute that
identifies the floor. After this attribute, FloorStatus messages contain information about existing
(one or more) floor requests that relate to that floor. The information about each particular floor
request is encoded in a FLOOR-REQUEST-INFORMATION attribute. This grouped attribute carries
a Floor Request ID that identifies the floor request, followed by a set of attributes that provide
information about the floor request.

After the first FloorStatus, the floor control server will continue sending FloorStatus messages,
periodically informing the client about changes on the floors the client requested information
about.

MUST

12.1.3. Reception of a Subsequent FloorStatus Message

When communicating over an unreliable transport and upon receiving a FloorStatus message
from a floor control server, the participant respond with a FloorStatusAck message within
the transaction failure window to complete the transaction.

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 53

12.2. Requesting Information about Floor Requests
A client can obtain information about the status of one or several floor requests in different
ways, which include using BFCP and using out-of-band mechanisms. Clients using BFCP to obtain
such information use the procedures described in this section.

Clients request information about the current status of a floor request by sending a
FloorRequestQuery message to the floor control server.

Requesting information about a particular floor request is useful in a number of situations. For
example, on reception of a FloorRequest message, a floor control server may choose to return
FloorRequestStatus messages only when the floor request changes its state (e.g., from Accepted to
Granted), but not when the floor request advances in its queue. In this situation, if the user
requests it, the floor participant can use a FloorRequestQuery message to poll the floor control
server for the status of the floor request.

12.2.1. Sending a FloorRequestQuery Message

The ABNF in Section 5.3.3 describes the attributes that a FloorRequestQuery message can
contain. In addition, the ABNF specifies normatively which of these attributes are mandatory,
and which ones are optional.

The client sets the Conference ID and the Transaction ID in the COMMON-HEADER following the
rules given in Section 8.1. The client sets the User ID in the COMMON-HEADER to the client's
identifier.

The client insert a FLOOR-REQUEST-ID attribute that identifies the floor request at the floor
control server.

MUST

12.2.2. Receiving a Response

A message from the floor control server is considered a response to the FloorRequestQuery
message if the message from the floor control server has the same Conference ID, Transaction ID,
and User ID as the FloorRequestQuery message, as described in Section 8.1. On receiving such a
response, the client follows the rules in Section 9 that relate to floor control server
authentication.

If the response is a FloorRequestStatus message, the client obtains information about the status
of the FloorRequest the client requested information about in a FLOOR-REQUEST-INFORMATION
attribute.

If the response is an Error message, the floor control server could not process the
FloorRequestQuery message for some reason, which is described in the Error message.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 54

12.3. Requesting Information about a User
A client can obtain information about a participant and the floor requests related to this
participant in different ways, which include using BFCP and using out-of-band mechanisms.
Clients using BFCP to obtain such information use the procedures described in this section.

Clients request information about a participant and the floor requests related to this participant
by sending a UserQuery message to the floor control server.

This functionality may be useful for floor chairs or floor participants interested in the display
name and the URI of a particular floor participant. In addition, a floor participant may find it
useful to request information about itself. For example, a floor participant, after experiencing
connectivity problems (e.g., its TCP connection with the floor control server was down for a while
and eventually was re-established), may need to request information about all the floor requests
associated to itself that still exist.

12.3.1. Sending a UserQuery Message

The ABNF in Section 5.3.5 describes the attributes that a UserQuery message can contain. In
addition, the ABNF specifies normatively which of these attributes are mandatory, and which
ones are optional.

The client sets the Conference ID and the Transaction ID in the COMMON-HEADER following the
rules given in Section 8.1. The client sets the User ID in the COMMON-HEADER to the client's
identifier.

If the floor participant the client is requesting information about is not the client issuing the
UserQuery message (which is identified by the User ID in the COMMON-HEADER of the message),
the client insert a BENEFICIARY-ID attribute.MUST

12.3.2. Receiving a Response

A message from the floor control server is considered a response to the UserQuery message if the
message from the floor control server has the same Conference ID, Transaction ID, and User ID as
the UserQuery message, as described in Section 8.1. On receiving such a response, the client
follows the rules in Section 9 that relate to floor control server authentication.

If the response is a UserStatus message, the client obtains information about the floor participant
in a BENEFICIARY-INFORMATION grouped attribute and about the status of the floor requests
associated with the floor participant in FLOOR-REQUEST-INFORMATION attributes.

If the response is an Error message, the floor control server could not process the UserQuery
message for some reason, which is described in the Error message.

12.4. Obtaining the Capabilities of a Floor Control Server
A client that wishes to obtain the capabilities of a floor control server does so by sending a Hello
message to the floor control server.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 55

12.4.1. Sending a Hello Message

The ABNF in Section 5.3.11 describes the attributes that a Hello message can contain. In addition,
the ABNF specifies normatively which of these attributes are mandatory, and which ones are
optional.

The client sets the Conference ID and the Transaction ID in the COMMON-HEADER following the
rules given in Section 8.1. The client sets the User ID in the COMMON-HEADER to the client's
identifier.

12.4.2. Receiving Responses

A message from the floor control server is considered a response to the Hello message by the
client if the message from the floor control server has the same Conference ID, Transaction ID,
and User ID as the Hello message, as described in Section 8.1. On receiving such a response, the
client follows the rules in Section 9 that relate to floor control server authentication.

If the response is a HelloAck message, the floor control server could process the Hello message
successfully. The SUPPORTED-PRIMITIVES and SUPPORTED-ATTRIBUTES attributes indicate
which primitives and attributes, respectively, are supported by the server.

If the response is an Error message, the floor control server could not process the Hello message
for some reason, which is described in the Error message.

13. Floor Control Server Operations
This section specifies how floor control servers can perform different operations, such as
granting a floor, using the protocol elements described in earlier sections.

On reception of a message from a client, the floor control server check whether the value
of the primitive is supported. If it is not, the floor control server send an Error message, as
described in Section 13.8, with Error Code 3 (Unknown Primitive).

On reception of a message from a client, the floor control server check whether the value
of the Conference ID matched an existing conference. If it does not, the floor control server
send an Error message, as described in Section 13.8, with Error Code 1 (Conference Does Not
Exist).

On reception of a message from a client, the floor control server follows the rules in Section 9
that relate to the authentication of the message.

On reception of a message from a client, the floor control server check whether it
understands all the mandatory ('M' bit set) attributes in the message. If the floor control server
does not understand all of them, the floor control server send an Error message, as
described in Section 13.8, with Error Code 4 (Unknown Mandatory Attribute). The Error message

 list the attributes that were not understood.

MUST
MUST

MUST
MUST

MUST

MUST

SHOULD

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 56

13.1. Reception of a FloorRequest Message
On reception of a FloorRequest message, the floor control server follows the rules in Section 9
that relate to client authentication and authorization. If while processing the FloorRequest
message, the floor control server encounters an error, it generate an Error response
following the procedures described in Section 13.8.

BFCP allows floor participants to have several ongoing floor requests for the same
floor (e.g., the same floor participant can occupy more than one position in a queue
at the same time). A floor control server that only supports a certain number of
ongoing floor requests per floor participant (e.g., one) can use Error Code 8 (You
have Already Reached the Maximum Number of Ongoing Floor Requests for This
Floor) to inform the floor participant.

When communicating over an unreliable transport and upon receiving a FloorRequest from a
participant, the floor control server respond with a FloorRequestStatus message within the
transaction failure window to complete the transaction.

MUST

MUST

13.1.1. Generating the First FloorRequestStatus Message

The successful processing of a FloorRequest message by a floor control server involves
generating one or several FloorRequestStatus messages, the first of which be generated
as soon as possible. If the floor control server cannot accept, grant, or deny the floor request right
away (e.g., a decision from a chair is needed), it use a Request Status value of Pending in
the OVERALL-REQUEST-STATUS attribute (within the FLOOR-REQUEST-INFORMATION grouped
attribute) of the first FloorRequestStatus message it generates.

The policy that a floor control server follows to grant or deny floors is outside the
scope of this document. A given floor control server may perform these decisions
automatically while another may contact a human acting as a chair every time a
decision needs to be made.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the FloorRequest into the FloorRequestStatus, as described in Section 8.2. Additionally, the floor
control server add a FLOOR-REQUEST-INFORMATION grouped attribute to the
FloorRequestStatus. The attributes contained in this grouped attribute carry information about
the floor request.

The floor control server assign an identifier that is unique within the conference to this
floor request, and insert it in the Floor Request ID field of the FLOOR-REQUEST-
INFORMATION attribute. This identifier will be used by the floor participant (or by a chair or
chairs) to refer to this specific floor request in the future.

SHOULD

SHOULD

MUST

MUST

MUST
MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 57

The floor control server copy the Floor IDs in the FLOOR-ID attributes of the FloorRequest
into the FLOOR-REQUEST-STATUS attributes in the FLOOR-REQUEST-INFORMATION grouped
attribute. These Floor IDs identify the floors being requested (i.e., the floors associated with this
particular floor request).

The floor control server copy (if present) the contents of the BENEFICIARY-ID attribute
from the FloorRequest into a BENEFICIARY-INFORMATION attribute inside the FLOOR-REQUEST-
INFORMATION grouped attribute. Additionally, the floor control server provide the display
name and the URI of the beneficiary in this BENEFICIARY-INFORMATION attribute.

The floor control server provide information about the requester of the floor in a
REQUESTED-BY-INFORMATION attribute inside the FLOOR-REQUEST-INFORMATION grouped
attribute.

The floor control server copy (if present) the PRIORITY attribute from the FloorRequest into
the FLOOR-REQUEST-INFORMATION grouped attribute.

Note that this attribute carries the priority requested by the participant. The priority
that the floor control server assigns to the floor request depends on the priority
requested by the participant and the rights the participant has according to the
policy of the conference. For example, a participant that is only allowed to use the
Normal priority may request Highest priority for a floor request. In that case, the
floor control server would ignore the priority requested by the participant.

The floor control server copy (if present) the PARTICIPANT-PROVIDED-INFO attribute from
the FloorRequest into the FLOOR-REQUEST-INFORMATION grouped attribute.

MUST

SHOULD

MAY

MAY

MAY

MAY

13.1.2. Generation of Subsequent FloorRequestStatus Messages

A floor request is considered to be ongoing as long as it is not in the Cancelled, Released, or
Revoked states. If the OVERALL-REQUEST-STATUS attribute (inside the FLOOR-REQUEST-
INFORMATION grouped attribute) of the first FloorRequestStatus message generated by the floor
control server did not indicate any of these states, the floor control server will need to send
subsequent FloorRequestStatus messages.

When the status of the floor request changes, the floor control server send new
FloorRequestStatus messages with the appropriate Request Status. The floor control server
add a FLOOR-REQUEST-INFORMATION attribute with a Floor Request ID equal to the one sent in
the first FloorRequestStatus message to any new FloorRequestStatus related to the same floor
request. (The Floor Request ID identifies the floor request to which the FloorRequestStatus
applies.)

When using BFCP over a reliable transport, the floor control server set the Transaction ID
of subsequent FloorRequestStatus messages to zero. When using BFCP over an unreliable
transport, the Transaction ID be non-zero and unique in the context of outstanding
transactions over an unreliable transport as described in Section 8.

SHOULD
MUST

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 58

The rate at which the floor control server sends FloorRequestStatus messages is a
matter of local policy. A floor control server may choose to send a new
FloorRequestStatus message every time the floor request moves in the floor request
queue, while another may choose only to send a new FloorRequestStatus message
when the floor request is Granted or Denied.

The floor control server may add a STATUS-INFO attribute to any of the FloorRequestStatus
messages it generates to provide extra information about its decisions regarding the floor
request (e.g., why it was denied).

Floor participants and floor chairs may request to be informed about the status of a
floor following the procedures in Section 12.1. If the processing of a floor request
changes the status of a floor (e.g., the floor request is granted and consequently the
floor has a new holder), the floor control server needs to follow the procedures in
Section 13.5 to inform the clients that have requested that information.

The COMMON-HEADER and the rest of the attributes are the same as in the first
FloorRequestStatus message.

The floor control server can discard the state information about a particular floor request when
this reaches a status of Cancelled, Released, or Revoked.

When communicating over an unreliable transport and a FloorRequestStatusAck message is not
received within the transaction failure window, the floor control server retransmit the
FloorRequestStatus message according to Section 6.2.

MUST

13.2. Reception of a FloorRequestQuery Message
On reception of a FloorRequestQuery message, the floor control server follows the rules in
Section 9 that relate to client authentication and authorization. If while processing the
FloorRequestQuery message, the floor control server encounters an error, it generate an
Error response following the procedures described in Section 13.8.

The successful processing of a FloorRequestQuery message by a floor control server involves
generating a FloorRequestStatus message, which be generated as soon as possible.

When communicating over an unreliable transport and upon receiving a FloorRequestQuery
from a participant, the floor control server respond with a FloorRequestStatus message
within the transaction failure window to complete the transaction.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the FloorRequestQuery message into the FloorRequestStatus message, as described in Section 8.2.
Additionally, the floor control server include information about the floor request in the
FLOOR-REQUEST-INFORMATION grouped attribute to the FloorRequestStatus.

MUST

SHOULD

MUST

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 59

The floor control server copy the contents of the FLOOR-REQUEST-ID attribute from the
FloorRequestQuery message into the Floor Request ID field of the FLOOR-REQUEST-
INFORMATION attribute.

The floor control server add FLOOR-REQUEST-STATUS attributes to the FLOOR-REQUEST-
INFORMATION grouped attribute identifying the floors being requested (i.e., the floors associated
with the floor request identified by the FLOOR-REQUEST-ID attribute).

The floor control server add a BENEFICIARY-ID attribute to the FLOOR-REQUEST-
INFORMATION grouped attribute identifying the beneficiary of the floor request. Additionally,
the floor control server provide the display name and the URI of the beneficiary in this
BENEFICIARY-INFORMATION attribute.

The floor control server provide information about the requester of the floor in a
REQUESTED-BY-INFORMATION attribute inside the FLOOR-REQUEST-INFORMATION grouped
attribute.

The floor control server provide the reason why the floor participant requested the floor in
a PARTICIPANT-PROVIDED-INFO.

The floor control server also add to the FLOOR-REQUEST-INFORMATION grouped attribute a
PRIORITY attribute with the Priority value requested for the floor request and a STATUS-INFO
attribute with extra information about the floor request.

The floor control server add an OVERALL-REQUEST-STATUS attribute to the FLOOR-
REQUEST-INFORMATION grouped attribute with the current status of the floor request. The floor
control server provide information about the status of the floor request as it relates to each
of the floors being requested in the FLOOR-REQUEST-STATUS attributes.

MUST

MUST

SHOULD

MAY

MAY

MAY

MAY

MUST

MAY

13.3. Reception of a UserQuery Message
On reception of a UserQuery message, the floor control server follows the rules in Section 9 that
relate to client authentication and authorization. If while processing the UserQuery message, the
floor control server encounters an error, it generate an Error response following the
procedures described in Section 13.8.

The successful processing of a UserQuery message by a floor control server involves generating a
UserStatus message, which be generated as soon as possible.

When communicating over an unreliable transport and upon receiving a UserQuery from a
participant, the floor control server respond with a UserStatus message within the
transaction failure window to complete the transaction.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the UserQuery message into the UserStatus message, as described in Section 8.2.

MUST

SHOULD

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 60

The sender of the UserQuery message is requesting information about all the floor requests
associated with a given participant (i.e., the floor requests where the participant is either the
beneficiary or the requester). This participant is identified by a BENEFICIARY-ID attribute or, in
the absence of a BENEFICIARY-ID attribute, by a the User ID in the COMMON-HEADER of the
UserQuery message.

The floor control server copy, if present, the contents of the BENEFICIARY-ID attribute from
the UserQuery message into a BENEFICIARY-INFORMATION attribute in the UserStatus message.
Additionally, the floor control server provide the display name and the URI of the
participant about which the UserStatus message provides information in this BENEFICIARY-
INFORMATION attribute.

The floor control server add to the UserStatus message a FLOOR-REQUEST-
INFORMATION grouped attribute for each floor request related to the participant about which
the message provides information (i.e., the floor requests where the participant is either the
beneficiary or the requester). For each FLOOR-REQUEST-INFORMATION attribute, the floor
control server follows the following steps.

The floor control server identify the floor request the FLOOR-REQUEST-INFORMATION
attribute applies to by filling the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
attribute.

The floor control server add FLOOR-REQUEST-STATUS attributes to the FLOOR-REQUEST-
INFORMATION grouped attribute identifying the floors being requested (i.e., the floors associated
with the floor request identified by the FLOOR-REQUEST-ID attribute).

The floor control server add a BENEFICIARY-ID attribute to the FLOOR-REQUEST-
INFORMATION grouped attribute identifying the beneficiary of the floor request. Additionally,
the floor control server provide the display name and the URI of the beneficiary in this
BENEFICIARY-INFORMATION attribute.

The floor control server provide information about the requester of the floor in a
REQUESTED-BY-INFORMATION attribute inside the FLOOR-REQUEST-INFORMATION grouped
attribute.

The floor control server provide the reason why the floor participant requested the floor in
a PARTICIPANT-PROVIDED-INFO.

The floor control server also add to the FLOOR-REQUEST-INFORMATION grouped attribute a
PRIORITY attribute with the Priority value requested for the floor request.

The floor control server include the current status of the floor request in an OVERALL-
REQUEST-STATUS attribute to the FLOOR-REQUEST-INFORMATION grouped attribute. The floor
control server add a STATUS-INFO attribute with extra information about the floor request.

The floor control server provide information about the status of the floor request as it
relates to each of the floors being requested in the FLOOR-REQUEST-STATUS attributes.

MUST

MAY

SHOULD

MUST

MUST

SHOULD

MAY

MAY

MAY

MAY

MUST

MAY

MAY

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 61

13.4. Reception of a FloorRelease Message
On reception of a FloorRelease message, the floor control server follows the rules in Section 9
that relate to client authentication and authorization. If while processing the FloorRelease
message, the floor control server encounters an error, it generate an Error response
following the procedures described in Section 13.8.

The successful processing of a FloorRelease message by a floor control server involves generating
a FloorRequestStatus message, which be generated as soon as possible.

When communicating over an unreliable transport and upon receiving a FloorRelease from a
participant, the floor control server respond with a FloorRequestStatus message within the
transaction failure window to complete the transaction.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the FloorRelease message into the FloorRequestStatus message, as described in Section 8.2.

The floor control server add a FLOOR-REQUEST-INFORMATION grouped attribute to the
FloorRequestStatus. The attributes contained in this grouped attribute carry information about
the floor request.

The FloorRelease message identifies the floor request it applies to using a FLOOR-REQUEST-ID.
The floor control server copy the contents of the FLOOR-REQUEST-ID attribute from the
FloorRelease message into the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
attribute.

The floor control server identify the floors being released (i.e., the floors associated with
the floor request identified by the FLOOR-REQUEST-ID attribute) in FLOOR-REQUEST-STATUS
attributes to the FLOOR-REQUEST-INFORMATION grouped attribute.

The floor control server add an OVERALL-REQUEST-STATUS attribute to the FLOOR-
REQUEST-INFORMATION grouped attribute. The Request Status value be Released, if the
floor (or floors) had been previously granted, or Cancelled, if the floor (or floors) had not been
previously granted. The floor control server add a STATUS-INFO attribute with extra
information about the floor request.

MUST

SHOULD

MUST

MUST

MUST

MUST

MUST

MUST
SHOULD

MAY

13.5. Reception of a FloorQuery Message
On reception of a FloorQuery message, the floor control server follows the rules in Section 9 that
relate to client authentication. If while processing the FloorQuery message, the floor control
server encounters an error, it generate an Error response following the procedures
described in Section 13.8.

When communicating over an unreliable transport and upon receiving a FloorQuery from a
participant, the floor control server respond with a FloorStatus message within the
transaction failure window to complete the transaction.

MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 62

A floor control server receiving a FloorQuery message from a client keep this client
informed about the status of the floors identified by FLOOR-ID attributes in the FloorQuery
message. Floor control servers keep clients informed by using FloorStatus messages.

An individual FloorStatus message carries information about a single floor. So, when a
FloorQuery message requests information about more than one floor, the floor control server
needs to send separate FloorStatus messages for different floors.

The information FloorQuery messages carry may depend on the user requesting the information.
For example, a chair may be able to receive information about pending requests, while a regular
user may not be authorized to do so.

SHOULD

13.5.1. Generation of the First FloorStatus Message

The successful processing of a FloorQuery message by a floor control server involves generating
one or several FloorStatus messages, the first of which be generated as soon as possible.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the FloorQuery message into the FloorStatus message, as described in Section 8.2.

If the FloorQuery message did not contain any FLOOR-ID attribute, the floor control server sends
the FloorStatus message without adding any additional attribute and does not send any
subsequent FloorStatus message to the floor participant.

If the FloorQuery message contained one or more FLOOR-ID attributes, the floor control server
chooses one from among them and adds this FLOOR-ID attribute to the FloorStatus message. The
floor control server add a FLOOR-REQUEST-INFORMATION grouped attribute for each
floor request associated to the floor. Each FLOOR-REQUEST-INFORMATION grouped attribute
contains a number of attributes that provide information about the floor request. For each
FLOOR-REQUEST-INFORMATION attribute, the floor control server follows the following steps.

The floor control server identify the floor request the FLOOR-REQUEST-INFORMATION
attribute applies to by filling the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
attribute.

The floor control server add FLOOR-REQUEST-STATUS attributes to the FLOOR-REQUEST-
INFORMATION grouped attribute identifying the floors being requested (i.e., the floors associated
with the floor request identified by the FLOOR-REQUEST-ID attribute).

The floor control server add a BENEFICIARY-ID attribute to the FLOOR-REQUEST-
INFORMATION grouped attribute identifying the beneficiary of the floor request. Additionally,
the floor control server provide the display name and the URI of the beneficiary in this
BENEFICIARY-INFORMATION attribute.

The floor control server provide information about the requester of the floor in a
REQUESTED-BY-INFORMATION attribute inside the FLOOR-REQUEST-INFORMATION grouped
attribute.

SHOULD

MUST

SHOULD

MUST

MUST

SHOULD

MAY

MAY

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 63

The floor control server provide the reason why the floor participant requested the floor in
a PARTICIPANT-PROVIDED-INFO.

The floor control server also add to the FLOOR-REQUEST-INFORMATION grouped attribute a
PRIORITY attribute with the Priority value requested for the floor request.

The floor control server add an OVERALL-REQUEST-STATUS attribute to the FLOOR-
REQUEST-INFORMATION grouped attribute with the current status of the floor request. The floor
control server add a STATUS-INFO attribute with extra information about the floor request.

The floor control server provide information about the status of the floor request as it
relates to each of the floors being requested in the FLOOR-REQUEST-STATUS attributes.

MAY

MAY

MUST

MAY

MAY

13.5.2. Generation of Subsequent FloorStatus Messages

If the FloorQuery message carried more than one FLOOR-ID attribute, the floor control server
 generate a FloorStatus message for each of them (except for the FLOOR-ID attribute

chosen for the first FloorStatus message) as soon as possible. These FloorStatus messages are
generated following the same rules as those for the first FloorStatus message (see Section 13.5.1),
but their Transaction ID is 0 when using a reliable transport and non-zero and unique in the
context of outstanding transactions when using an unreliable transport (cf. Section 8).

After generating these messages, the floor control server sends FloorStatus messages,
periodically keeping the client informed about all the floors for which the client requested
information. The Transaction ID of these messages be 0 when using a reliable transport
and non-zero and unique in the context of outstanding transactions when using an unreliable
transport (cf. Section 8).

The rate at which the floor control server sends FloorStatus messages is a matter of
local policy. A floor control server may choose to send a new FloorStatus message
every time a new floor request arrives, while another may choose to only send a
new FloorStatus message when a new floor request is Granted.

When communicating over an unreliable transport and a FloorStatusAck message is not received
within the transaction failure window, the floor control server retransmit the FloorStatus
message according to Section 6.2.

SHOULD

MUST

MUST

13.6. Reception of a ChairAction Message
On reception of a ChairAction message, the floor control server follows the rules in Section 9 that
relate to client authentication and authorization. If while processing the ChairAction message,
the floor control server encounters an error, it generate an Error response following the
procedures described in Section 13.8.

The successful processing of a ChairAction message by a floor control server involves generating
a ChairActionAck message, which be generated as soon as possible.

MUST

SHOULD

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 64

When communicating over an unreliable transport and upon receiving a ChairAction from a
chair, the floor control server respond with a ChairActionAck message within the
transaction failure window to complete the transaction.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the ChairAction message into the ChairActionAck message, as described in Section 8.2.

The floor control server needs to take into consideration the operation requested in the
ChairAction message (e.g., granting a floor) but does not necessarily need to perform it as
requested by the floor chair. The operation that the floor control server performs depends on the
ChairAction message and on the internal state of the floor control server.

For example, a floor chair may send a ChairAction message granting a floor that was requested
as part of an atomic floor request operation that involved several floors. Even if the chair
responsible for one of the floors instructs the floor control server to grant the floor, the floor
control server will not grant it until the chairs responsible for the other floors agree to grant
them as well.

So, the floor control server is ultimately responsible for keeping a coherent floor state using
instructions from floor chairs as input to this state.

If the new Status in the ChairAction message is Accepted and all the bits of the Queue Position
field are zero, the floor chair is requesting that the floor control server assign a queue position
(e.g., the last in the queue) to the floor request based on the local policy of the floor control
server. (Of course, such a request only applies if the floor control server implements a queue.)

MUST

MUST

13.7. Reception of a Hello Message
On reception of a Hello message, the floor control server follows the rules in Section 9 that relate
to client authentication. If while processing the Hello message, the floor control server
encounters an error, it generate an Error response following the procedures described in
Section 13.8.

If the version of BFCP specified in the version field of the COMMON-HEADER is supported by the
floor control server, it respond with the same version number in the HelloAck; this defines
the version for all subsequent BFCP messages within this BFCP Connection.

When communicating over an unreliable transport and upon receiving a Hello from a
participant, the floor control server respond with a HelloAck message within the
transaction failure window to complete the transaction.

The successful processing of a Hello message by a floor control server involves generating a
HelloAck message, which be generated as soon as possible. The floor control server

 copy the Conference ID, the Transaction ID, and the User ID from the Hello into the
HelloAck, as described in Section 8.2.

The floor control server add a SUPPORTED-PRIMITIVES attribute to the HelloAck message
listing all the primitives (i.e., BFCP messages) supported by the floor control server.

MUST

MUST

MUST

SHOULD
MUST

MUST

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 65

The floor control server add a SUPPORTED-ATTRIBUTES attribute to the HelloAck message
listing all the attributes supported by the floor control server.

MUST

13.8. Error Message Generation
Error messages are always sent in response to a previous message from the client as part of a
client-initiated transaction. The ABNF in Section 5.3.13 describes the attributes that an Error
message can contain. In addition, the ABNF specifies normatively which of these attributes are
mandatory and which ones are optional.

The floor control server copy the Conference ID, the Transaction ID, and the User ID from
the message from the client into the Error message, as described in Section 8.2.

The floor control server add an ERROR-CODE attribute to the Error message. The ERROR-
CODE attribute contains an error code from Table 5. Additionally, the floor control server may
add an ERROR-INFO attribute with extra information about the error.

MUST

MUST

14. Security Considerations
BFCP uses TLS/DTLS to provide mutual authentication between clients and servers. TLS/DTLS
also provides replay and integrity protection and confidentiality. It is that TLS/
DTLS with an encryption algorithm according to Section 7 always be used. In cases where
signaling/control traffic is properly protected, as described in Section 9, it is to use a
mandated encryption algorithm. BFCP entities use other security mechanisms to interwork
with legacy implementation that do not use TLS/DTLS as long as these mechanisms provide
similar security properties. An example of other mechanisms to effectively secure a nonsecure
BFCP connection is IPsec .

The remainder of this section analyzes some of the threats against BFCP and how they are
addressed.

An attacker may attempt to impersonate a client (a floor participant or a floor chair) in order to
generate forged floor requests or to grant or deny existing floor requests. Client impersonation is
avoided by having servers only accept BFCP messages over authenticated TLS/DTLS connections.
The floor control server assumes that attackers cannot hijack the TLS/DTLS connection and,
therefore, that messages over the TLS/DTLS connection come from the client that was initially
authenticated.

An attacker may attempt to impersonate a floor control server. A successful attacker would be
able to make clients think that they hold a particular floor so that they would try to access a
resource (e.g., sending media) without having legitimate rights to access it. Floor control server
impersonation is avoided by having servers only accept BFCP messages over authenticated TLS/
DTLS connections, as well as ensuring clients only send and accept messages over authenticated
TLS/DTLS connections.

Attackers may attempt to modify messages exchanged by a client and a floor control server. The
integrity protection provided by TLS/DTLS connections prevents this attack.

RECOMMENDED

REQUIRED
MAY

[21]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 66

An attacker may attempt to fetch a valid message sent by a client to a floor control server and
replay it over a connection between the attacker and the floor control server. This attack is
prevented by having floor control servers check that messages arriving over a given
authenticated TLS/DTLS connection use an authorized user ID (i.e., a user ID that the user that
established the authenticated TLS/DTLS connection is allowed to use).

Attackers may attempt to pick messages from the network to get access to confidential
information between the floor control server and a client (e.g., why a floor request was denied).
TLS/DTLS confidentiality prevents this attack. Therefore, it is that TLS/DTLS be used
with an encryption algorithm according to Section 7.

REQUIRED

15. IANA Considerations
The IANA has created a registry for BFCP parameters called "The Binary Floor Control Protocol
(BFCP) Parameters". This registry has a number of subregistries, which are described in the
following sections.

15.1. Attributes Subregistry
This section establishes the "Attributes" subregistry under the BFCP Parameters registry. As per
the terminology in RFC 8126 , the registration policy for BFCP attributes is "Specification
Required". For the purposes of this subregistry, the BFCP attributes for which IANA registration is
requested be defined by a Standards Track RFC. Such an RFC specify the attribute's
type, name, format, and semantics.

For each BFCP attribute, the IANA registers its type, its name, and the reference to the RFC where
the attribute is defined. The following table contains the initial values of this subregistry.

[6]

MUST MUST

Type Attribute Reference

1 BENEFICIARY-ID RFC 8855

2 FLOOR-ID RFC 8855

3 FLOOR-REQUEST-ID RFC 8855

4 PRIORITY RFC 8855

5 REQUEST-STATUS RFC 8855

6 ERROR-CODE RFC 8855

7 ERROR-INFO RFC 8855

8 PARTICIPANT-PROVIDED-INFO RFC 8855

9 STATUS-INFO RFC 8855

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 67

Type Attribute Reference

10 SUPPORTED-ATTRIBUTES RFC 8855

11 SUPPORTED-PRIMITIVES RFC 8855

12 USER-DISPLAY-NAME RFC 8855

13 USER-URI RFC 8855

14 BENEFICIARY-INFORMATION RFC 8855

15 FLOOR-REQUEST-INFORMATION RFC 8855

16 REQUESTED-BY-INFORMATION RFC 8855

17 FLOOR-REQUEST-STATUS RFC 8855

18 OVERALL-REQUEST-STATUS RFC 8855

Table 7: Initial values of the BFCP Attributes subregistry

15.2. Primitives Subregistry
This section establishes the "Primitives" subregistry under the BFCP Parameters registry. As per
the terminology in RFC 8126 , the registration policy for BFCP primitives is "Specification
Required". For the purposes of this subregistry, the BFCP primitives for which IANA registration
is requested be defined by a Standards Track RFC. Such an RFC specify the
primitive's value, name, format, and semantics.

For each BFCP primitive, the IANA registers its value, its name, and the reference to the RFC
where the primitive is defined. The following table contains the initial values of this subregistry.

[6]

MUST MUST

Value Primitive Reference

1 FloorRequest RFC 8855

2 FloorRelease RFC 8855

3 FloorRequestQuery RFC 8855

4 FloorRequestStatus RFC 8855

5 UserQuery RFC 8855

6 UserStatus RFC 8855

7 FloorQuery RFC 8855

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 68

15.3. Request Statuses Subregistry
This section establishes the "Request Statuses" subregistry under the BFCP Parameters registry.
As per the terminology in RFC 8126 , the registration policy for BFCP request statuses is
"Specification Required". For the purposes of this subregistry, the BFCP request statuses for
which IANA registration is requested be defined by a Standards Track RFC. Such an RFC

 specify the value and the semantics of the request status.

For each BFCP request status, the IANA registers its value, its meaning, and the reference to the
RFC where the request status is defined. The following table contains the initial values of this
subregistry.

Value Primitive Reference

8 FloorStatus RFC 8855

9 ChairAction RFC 8855

10 ChairActionAck RFC 8855

11 Hello RFC 8855

12 HelloAck RFC 8855

13 Error RFC 8855

14 FloorRequestStatusAck RFC 8855

15 FloorStatusAck RFC 8855

16 Goodbye RFC 8855

17 GoodbyeAck RFC 8855

Table 8: Initial values of the BFCP Primitives
subregistry

[6]

MUST
MUST

Value Status Reference

1 Pending RFC 8855

2 Accepted RFC 8855

3 Granted RFC 8855

4 Denied RFC 8855

5 Cancelled RFC 8855

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 69

Value Status Reference

6 Released RFC 8855

7 Revoked RFC 8855

Table 9: Initial values of the Request
Statuses subregistry

15.4. Error Codes Subregistry
This section establishes the "Error Codes" subregistry under the BFCP Parameters registry. As per
the terminology in RFC 8126 , the registration policy for BFCP error codes is "Specification
Required". For the purposes of this subregistry, the BFCP error codes for which IANA registration
is requested be defined by a Standards Track RFC. Such an RFC specify the value and
the semantics of the error code, and any Error Specific Details that apply to it.

For each BFCP primitive, the IANA registers its value, its meaning, and the reference to the RFC
where the primitive is defined. The following table contains the initial values of this subregistry.

[6]

MUST MUST

Value Meaning Reference

1 Conference Does Not Exist RFC 8855

2 User Does Not Exist RFC 8855

3 Unknown Primitive RFC 8855

4 Unknown Mandatory Attribute RFC 8855

5 Unauthorized Operation RFC 8855

6 Invalid Floor ID RFC 8855

7 Floor Request ID Does Not Exist RFC 8855

8 You have Already Reached the Maximum Number of Ongoing Floor
Requests for This Floor

RFC 8855

9 Use TLS RFC 8855

10 Unable to Parse Message RFC 8855

11 Use DTLS RFC 8855

12 Unsupported Version RFC 8855

13 Incorrect Message Length RFC 8855

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 70

Value Meaning Reference

14 Generic Error RFC 8855

Table 10: Initial values of the Error Codes subregistry

16. Changes from RFC 4582
The following is the list of technical changes and other non-trivial fixes from .

16.1. Extensions for an Unreliable Transport
The main purpose of this work was to revise the specification to support BFCP over an unreliable
transport, resulting in the following changes:

Overview of Operation (Section 4):

Changed the description of client-initiated and server-initiated transactions, referring to
Section 8.

COMMON-HEADER Format (Section 5.1):

Ver(sion) field, where the value 2 is used for the extensions for an unreliable transport.
Added new R and F flag bits for an unreliable transport. Res(erved) field is now 3 bit. New
optional Fragment Offset and Fragment Length fields.

New primitives (Section 5.1):

Added four new primitives: FloorRequestStatusAck, FloorStatusAck, Goodbye, and
GoodbyeAck.

New error codes (Section 5.2.6):

Added three new error codes: "Unable to Parse Message", "Use DTLS" and "Unsupported
Version". Note that two additional error codes were added, see Section 16.2.

ABNF for new primitives (Section 5.3):

Added new subsections with normative ABNF for the new primitives.

Transport split in two (Section 6):

Section 6 specifying the transport was split in two subsections; Section 6.1 for a reliable
transport and Section 6.2 for an unreliable transport. The specification for an unreliable
transport, among other issues, deals with reliability, congestion control, fragmentation and
ICMP.

Mandated DTLS (Section 7 and Section 9):

Mandated DTLS support when transport over UDP is used.

[3]

1.

2.

3.

4.

5.

6.

7.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 71

Transaction changes (Section 8):

Server-initiated transactions over an unreliable transport have non-zero and unique
Transaction IDs. Over an unreliable transport, the retransmit timers T1 and T2 described in
Section 8.3 apply.

Timely response required (Section 8.3, Section 10.1.2, Section 10.2.2, Section 11.2, Section
12.1.2, Section 12.2.2, Section 12.3.2, Section 12.4.2, Section 10.1.3 and Section 12.1.3):

Described that a given response must be sent within the transaction failure window to
complete the transaction.

Updated IANA Considerations (Section 15):

Added the new primitives and error codes to Section 15.2 and Section 15.4 respectively.

Examples over an unreliable transport (Appendix A):

Added sample interactions over an unreliable transport for the scenarios in Figure 2 and
Figure 3

Motivation for an unreliable transport (Appendix B):

Added introduction to and motivation for extending BFCP to support an unreliable transport.

8.

9.

10.

11.

12.

16.2. Other Changes
Clarifications and bug fixes:

ABNF fixes (Figure 22, Figure 24, Figure 26, Figure 28, Figure 30, and the ABNF figures in
Section 5.3):

Although formally correct in , the notation has changed in a number of figures to an
equivalent form for clarity, e.g., s/*1(FLOOR-ID)/[FLOOR-ID]/ in Figure 38 and s/*[XXX]/*
(XXX)/ in the other figures.

Typo (Section 12.4.2):

Changed from SUPPORTED-PRIMITVIES to SUPPORTED-PRIMITIVES in the second paragraph.

Corrected attribute type (Section 13.1.1):

Changed from PARTICIPANT-PROVIDED-INFO to PRIORITY attribute in the eighth paragraph,
since the note below describes priority and that the last paragraph deals with PARTICIPANT-
PROVIDED-INFO.

New error codes (Section 5.2.6):

Added two additional error codes: "Incorrect Message Length" and "Generic Error".

New cipher suites (Section 7)

1.

[3]

2.

3.

4.

5.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 72

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

17. References

17.1. Normative References

, , ,
, , March 1997,
.

,
, , , June 2011,

.

, ,
, , November 2006,

.

,
, , , September 2007,

.

,
, , , , January 2008,

.

,
, , , , June

2017, .

,
, , , August 2008,

.

, ,
, , January 2012,
.

, , , ,
, November 2003,

.

Additional cipher suites are now specified which should be supported.

Assorted clarifications (Across the document):

Language clarifications as a result of reviews. Also, the normative language was tightened
where appropriate, i.e. changed from strength to in a number of places.

6.

SHOULD MUST

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Paxson, V., Allman, M., Chu, J., and M. Sargent "Computing TCP's Retransmission
Timer" RFC 6298 DOI 10.17487/RFC6298 <https://www.rfc-editor.org/
info/rfc6298>

Camarillo, G., Ott, J., and K. Drage "The Binary Floor Control Protocol (BFCP)"
RFC 4582 DOI 10.17487/RFC4582 <https://www.rfc-editor.org/
info/rfc4582>

Camarillo, G. "Connection Establishment in the Binary Floor Control Protocol
(BFCP)" RFC 5018 DOI 10.17487/RFC5018 <https://www.rfc-
editor.org/info/rfc5018>

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Rescorla, E. and N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 73

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc4582
https://www.rfc-editor.org/info/rfc4582
https://www.rfc-editor.org/info/rfc5018
https://www.rfc-editor.org/info/rfc5018
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

, ,
, , , May 2017,

.

, , ,
, August 2018, .

,
, ,

, April 2020, .

, , , ,
, July 2007, .

,
, , , October 2008,

.

, , ,
, , March 2017,

.

,

, , , July 2018,
.

17.2. Informative References

,
, , , June 2002,

.

,
, , , February 2006,

.

,
, , , June 2008,

.

, , ,
, June 2002, .

, , ,
, December 2005,

.

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Camarillo, G., Kristensen, T., and C. Holmberg "Session Description Protocol
(SDP) Format for Binary Floor Control Protocol (BFCP) Streams" RFC 8856 DOI
10.17487/RFC8856 <https://www.rfc-editor.org/info/rfc8856>

Wing, D. "Symmetric RTP / RTP Control Protocol (RTCP)" BCP 131 RFC 4961 DOI
10.17487/RFC4961 <https://www.rfc-editor.org/info/rfc4961>

Rosenberg, J., Mahy, R., Matthews, P., and D. Wing "Session Traversal Utilities for
NAT (STUN)" RFC 5389 DOI 10.17487/RFC5389 <https://www.rfc-
editor.org/info/rfc5389>

Eggert, L., Fairhurst, G., and G. Shepherd "UDP Usage Guidelines" BCP 145 RFC
8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/
rfc8085>

Keranen, A., Holmberg, C., and J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rosenberg, J. and H. Schulzrinne "An Offer/Answer Model with Session
Description Protocol (SDP)" RFC 3264 DOI 10.17487/RFC3264
<https://www.rfc-editor.org/info/rfc3264>

Koskelainen, P., Ott, J., Schulzrinne, H., and X. Wu "Requirements for Floor
Control Protocols" RFC 4376 DOI 10.17487/RFC4376 <https://
www.rfc-editor.org/info/rfc4376>

Barnes, M., Boulton, C., and O. Levin "A Framework for Centralized
Conferencing" RFC 5239 DOI 10.17487/RFC5239 <https://www.rfc-
editor.org/info/rfc5239>

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI
10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Kent, S. and K. Seo "Security Architecture for the Internet Protocol" RFC 4301
DOI 10.17487/RFC4301 <https://www.rfc-editor.org/info/
rfc4301>

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 74

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8856
https://www.rfc-editor.org/info/rfc4961
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc4376
https://www.rfc-editor.org/info/rfc4376
https://www.rfc-editor.org/info/rfc5239
https://www.rfc-editor.org/info/rfc5239
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

,
, ,

, March 2012, .

,
, , , March

2012, .

,
, ,

, March 2012, .

, , ,
, November 1990, .

,
, , , , July 2017,

.

, , ,
, March 2007, .

,

, , , May 2010,
.

,
, ,

, May 2013, .

,
,

, , , May 2015,
.

,
, , , February 2006,

.

, , , , January 2011,
.

, , ,
, September 2007, .

,
, ,

, March 2012, .

Novo, O., Camarillo, G., Morgan, D., and J. Urpalainen "Conference Information
Data Model for Centralized Conferencing (XCON)" RFC 6501 DOI 10.17487/
RFC6501 <https://www.rfc-editor.org/info/rfc6501>

Barnes, M., Boulton, C., Romano, S., and H. Schulzrinne "Centralized
Conferencing Manipulation Protocol" RFC 6503 DOI 10.17487/RFC6503

<https://www.rfc-editor.org/info/rfc6503>

Barnes, M., Miniero, L., Presta, R., and S P. Romano "Centralized Conferencing
Manipulation Protocol (CCMP) Call Flow Examples" RFC 6504 DOI 10.17487/
RFC6504 <https://www.rfc-editor.org/info/rfc6504>

Mogul, J. and S. Deering "Path MTU discovery" RFC 1191 DOI 10.17487/
RFC1191 <https://www.rfc-editor.org/info/rfc1191>

McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed. "Path MTU Discovery for IP
version 6" STD 87 RFC 8201 DOI 10.17487/RFC8201 <https://www.rfc-
editor.org/info/rfc8201>

Mathis, M. and J. Heffner "Packetization Layer Path MTU Discovery" RFC 4821
DOI 10.17487/RFC4821 <https://www.rfc-editor.org/info/rfc4821>

Fischl, J., Tschofenig, H., and E. Rescorla "Framework for Establishing a Secure
Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport
Layer Security (DTLS)" RFC 5763 DOI 10.17487/RFC5763 <https://
www.rfc-editor.org/info/rfc5763>

Tuexen, M. and R. Stewart "UDP Encapsulation of Stream Control Transmission
Protocol (SCTP) Packets for End-Host to End-Host Communication" RFC 6951
DOI 10.17487/RFC6951 <https://www.rfc-editor.org/info/rfc6951>

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

Huitema, C. "Teredo: Tunneling IPv6 over UDP through Network Address
Translations (NATs)" RFC 4380 DOI 10.17487/RFC4380 <https://
www.rfc-editor.org/info/rfc4380>

Thaler, D. "Teredo Extensions" RFC 6081 DOI 10.17487/RFC6081
<https://www.rfc-editor.org/info/rfc6081>

Stewart, R., Ed. "Stream Control Transmission Protocol" RFC 4960 DOI
10.17487/RFC4960 <https://www.rfc-editor.org/info/rfc4960>

Rosenberg, J., Keranen, A., Lowekamp, B. B., and A. B. Roach "TCP Candidates
with Interactive Connectivity Establishment (ICE)" RFC 6544 DOI 10.17487/
RFC6544 <https://www.rfc-editor.org/info/rfc6544>

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 75

https://www.rfc-editor.org/info/rfc6501
https://www.rfc-editor.org/info/rfc6503
https://www.rfc-editor.org/info/rfc6504
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc4380
https://www.rfc-editor.org/info/rfc4380
https://www.rfc-editor.org/info/rfc6081
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc6544

[35]

[36]

[37]

[38]

, ,
, , 12 July 2010,

.

,
, ,
, 30 May 2013,

.

,
, 2005,

.

,
, April 2005,

.

Manner, J., Varis, N., and B. Briscoe "Generic UDP Tunnelling (GUT)" Work in
Progress Internet-Draft, draft-manner-tsvwg-gut-02 <https://
tools.ietf.org/html/draft-manner-tsvwg-gut-02>

Stucker, B., Tschofenig, H., and G. Salgueiro "Analysis of Middlebox Interactions
for Signaling Protocol Communication along the Media Path" Work in Progress
Internet-Draft, draft-ietf-mmusic-media-path-middleboxes-07
<https://tools.ietf.org/html/draft-ietf-mmusic-media-path-middleboxes-07>

Guha, S. and P. Francis "Characterization and Measurement of TCP Traversal
through NATs and Firewalls" <https://www.usenix.org/legacy/event/imc05/
tech/full_papers/guha/guha.pdf>

Ford, B., Srisuresh, P., and D. Kegel "Peer-to-Peer Communication Across
Network Address Translators" <https://www.usenix.org/legacy/
events/usenix05/tech/general/full_papers/ford/ford.pdf>

Appendix A. Example Call Flows for BFCP over an Unreliable
Transport
With reference to Section 4.1, the following figures show representative call flows for requesting
and releasing a floor, and obtaining status information about a floor when BFCP is deployed over
an unreliable transport. The figures here show a lossless interaction.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 76

https://tools.ietf.org/html/draft-manner-tsvwg-gut-02
https://tools.ietf.org/html/draft-manner-tsvwg-gut-02
https://tools.ietf.org/html/draft-ietf-mmusic-media-path-middleboxes-07
https://www.usenix.org/legacy/event/imc05/tech/full_papers/guha/guha.pdf
https://www.usenix.org/legacy/event/imc05/tech/full_papers/guha/guha.pdf
https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/ford/ford.pdf
https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/ford/ford.pdf

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 77

 Floor Participant Floor Control
 Server
 |(1) FloorRequest |
 |Transaction Responder: 0 |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorRequestStatus |
 |Transaction Responder: 1 |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Pending |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(3) FloorRequestStatus |
 |Transaction Responder: 0 |
 |Transaction ID: 124 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(4) FloorRequestStatusAck |
 |Transaction Responder: 1 |
 |Transaction ID: 124 |
 |User ID: 234 |
 |-->|
 | |
 |(5) FloorRequestStatus |
 |Transaction Responder: 0 |
 |Transaction ID: 125 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(6) FloorRequestStatusAck |
 |Transaction Responder: 1 |
 |Transaction ID: 125 |
 |User ID: 234 |
 |-->|

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 78

Note that in Figure 48, the FloorRequestStatus message from the floor control server to the floor
participant is a transaction-closing message as a response to the client-initiated transaction with
Transaction ID 126. As such, it is not followed by a FloorRequestStatusAck message from the floor
participant to the floor control server.

Figure 48: Requesting and releasing a floor

 | |
 |(7) FloorRelease |
 |Transaction Responder: 0 |
 |Transaction ID: 126 |
 |User ID: 234 |
 |FLOOR-REQUEST-ID: 789 |
 |-->|
 | |
 |(8) FloorRequestStatus |
 |Transaction Responder: 1 |
 |Transaction ID: 126 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Released |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 79

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 80

 Floor Participant Floor Control
 Server
 |(1) FloorQuery |
 |Transaction Responder: 0 |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorStatus |
 |Transaction Responder: 1 |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 2nd |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(3) FloorStatus |
 |Transaction Responder: 0 |
 |Transaction ID: 258 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 81

Figure 49: Obtaining status information about a floor

 | |
 |(4) FloorStatusAck |
 |Transaction Responder: 1 |
 |Transaction ID: 258 |
 |User ID: 234 |
 |-->|
 | |
 |(5) FloorStatus |
 |Transaction Responder: 0 |
 |Transaction ID: 259 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(6) FloorStatusAck |
 |Transaction Responder: 1 |
 |Transaction ID: 259 |
 |User ID: 234 |
 |-->|

Appendix B. Motivation for Supporting an Unreliable
Transport
This appendix is provided as an aid to understand the background and rationale for adding
support for unreliable transport.

B.1. Motivation
In existing video conferencing deployments, BFCP is used to manage the floor for the content
sharing associated with the conference. For peer-to-peer scenarios, including business-to-
business conferences and point-to-point conferences in general, it is frequently the case that one
or both endpoints exist behind a NAT. BFCP roles are negotiated in the offer/answer exchange as
specified in , resulting in one endpoint being responsible for opening the TCP connection
used for the BFCP communication.

[12]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 82

The communication session between the video conferencing endpoints typically consists of a
number of RTP over UDP media streams for audio and video and a BFCP connection for floor
control. Existing deployments are most common in, but not limited to, enterprise networks. In
existing deployments, NAT traversal for the RTP streams works using ICE and/or other methods,
including those described in .

When enhancing an existing SIP-based video conferencing deployment with support for content
sharing, the BFCP connection often poses a problem. The reasons for this fall into two general
classes. First, there may be a strong preference for UDP-based signaling in general. On high-
capacity endpoints (e.g., Public Switched Telephone Network (PSTN) gateways or SIP/H.323 inter-
working gateways), TCP can suffer from head-of-line blocking, and it uses many kernel buffers.
Network operators view UDP as a way to avoid both of these. Second, the establishment and
traversal of the TCP connection involving ephemeral ports, as is typically the case with BFCP over
TCP, can be problematic, as described in . A broad study of NAT behavior and
peer-to-peer TCP establishment for a comprehensive set of TCP NAT traversal techniques over a
wide range of commercial NAT products concluded that it was not possible to establish a TCP
connection in 11% of the cases . The results are worse when focusing on enterprise NATs. A
study of hole-punching as a NAT traversal technique across a wide variety of deployed NATs
reported consistently higher success rates when using UDP than when using TCP .

It is worth noting that BFCP over UDP is already being used in real deployments, underlining the
necessity to specify a common way to exchange BFCP messages where TCP is not appropriate, to
avoid a situation where multiple different and non-interoperable implementations would coexist
in the market. The purpose of this document is to extend the standard specification to support
unreliable transport in order to facilitate complete interoperability between implementations.

Figure 50: Use case

 +---------+
 | Network |
 +---------+
 +-----+ / \ +-----+
 | NAT |/ \| NAT |
 +-----+ +-----+
+----+ / \ +----+
|BFCP|/ \|BFCP|
| UA | | UA |
+----+ +----+

[36]

Appendix A of [34]

[37]

[38]

B.1.1. Alternatives Considered
In selecting the approach of defining UDP as an alternate transport for BFCP, several alternatives
were considered and explored to some degree. Each of these is discussed briefly in the following
subsections. In summary, while the alternatives that were not chosen work in a number of
scenarios, they are not sufficient, in and of themselves, to address the use case targeted by this
document. The last alternative, presented in Appendix B.1.1.7, was selected and is specified in
this document.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 83

https://www.rfc-editor.org/rfc/rfc6544#appendix-A

It is also worth noting that the IETF Transport Area was asked for a way to tunnel TCP over UDP,
but at that point there was no consensus on how to achieve that.

B.1.1.1. ICE TCP

ICE TCP extends ICE to TCP-based media, including the ability to offer a mix of TCP- and UDP-
based candidates for a single stream. ICE TCP has, in general, a lower success probability for
enabling TCP connectivity without a relay if both of the hosts are behind a NAT (see

) than enabling UDP connectivity in the same scenarios. The happens because many of the
currently deployed NATs in video conferencing networks do not support the flow of TCP
handshake packets seen in the case of TCP simultaneous-open, either because they do not allow
incoming TCP SYN packets from an address to which a SYN packet has been sent recently, or
because they do not properly process the subsequent SYNACK. Implementing various techniques
advocated for candidate collection in should increase the success probability, but many of
these techniques require support from some network elements (e.g., from the NATs). Such
support is not common in enterprise NATs.

[34]

Appendix A
of [34]

[34]

B.1.1.2. Teredo

Teredo enables nodes located behind one or more IPv4 NATs to obtain IPv6 connectivity by
tunneling packets over UDP. Teredo extensions provide additional capabilities to Teredo,
including support for more types of NATs and support for more efficient communication.

As defined, Teredo could be used to make BFCP work for the video conferencing use cases
addressed in this document. However, running the service requires the help of "Teredo servers"
and "Teredo relays" . These servers and relays generally do not exist in current video
conferencing deployments. It also requires IPv6 awareness on the endpoints. It should also be
noted that ICMP6, as used with Teredo to complete an initial protocol exchange and confirm that
the appropriate NAT bindings have been set up, is not a conventional feature of IPv4 or even
IPv6, and some currently deployed IPv6 firewalls discard ICMP messages. As these networks
continue to evolve and tackle the transaction to IPv6, Teredo servers and relays may be deployed,
making Teredo available as a suitable alternative to BFCP over UDP.

[31]
[32]

[31]

B.1.1.3. GUT

GUT attempts to facilitate tunneling over UDP by encapsulating the native transport protocol
and its payload (in general the whole IP payload) within a UDP packet destined to the well-known
port GUT_P. Unfortunately, it requires user-space TCP, for which there is not a readily available
implementation, and creating one is a large project in itself. This document has expired, and its
future is still unclear as it has not yet been adopted by a working group.

[35]

B.1.1.4. UPnP IGD

Universal Plug and Play Internet Gateway Devices (UPnP IGD) sit on the edge of the network,
providing connectivity to the Internet for computers internal to the LAN, but do not allow
Internet devices to connect to computers on the internal LAN. IGDs enable a computer on an
internal LAN to create port mappings on their NAT, through which hosts on the Internet can send
data that will be forwarded to the computer on the internal LAN. IGDs may be self-contained
hardware devices or may be software components provided within an operating system.

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 84

https://www.rfc-editor.org/rfc/rfc6544#appendix-A

In considering UPnP IGD, several issues exist. Not all NATs support UPnP, and many that do
support it are configured with it turned off by default. NATs are often multilayered, and UPnP
does not work well with such NATs. For example, a typical DSL modem acts as a NAT, and the
user plugs in a wireless access point behind that, which adds another layer of NAT. The client can
discover the first layer of NAT using multicast, but it is harder to figure out how to discover and
control NATs in the next layer up.

B.1.1.5. NAT PMP

The NAT Port Mapping Protocol (NAT PMP) allows a computer in a private network (behind a
NAT router) to automatically configure the router to allow parties outside the private network to
contact it. NAT PMP runs over UDP. It essentially automates the process of port forwarding.
Included in the protocol is a method for retrieving the public IP address of a NAT gateway, thus
allowing a client to make this public IP address and port number known to peers that may wish
to communicate with it.

Many NATs do not support PMP. In those that do support it, it has similar issues with negotiation
of multilayer NATs as UPnP. Video conferencing is used extensively in enterprise networks, and
NAT PMP is not generally available in enterprise-class routers.

B.1.1.6. SCTP

It would be quite straightforward to specify a BFCP binding for Stream Control Transmission
Protocol (SCTP) , and then tunnel SCTP over UDP in the use case described in Appendix B.1.
SCTP is gaining some momentum currently. There was ongoing discussion in the RTCWeb
Working Group regarding this approach, which resulted in . However, this approach to
tunneling over UDP was not mature enough when considered and was not even fully specified.

[33]

[29]

B.1.1.7. BFCP over UDP Transport

To overcome the problems with establishing TCP flows between BFCP entities, an alternative is to
define UDP as an alternate transport for BFCP, leveraging the same mechanisms in place for the
RTP over UDP media streams for the BFCP communication. When using UDP as the transport,
following the guidelines provided in is recommended.

Minor changes to the transaction model have been introduced in that all requests now have an
appropriate response to complete the transaction. The requests are sent with a retransmission
timer associated with the response to achieve reliability. This alternative does not change the
semantics of BFCP. It permits UDP as an alternate transport.

Existing implementations, in the spirit of the approach detailed in earlier draft versions of this
document, have demonstrated that this approach is feasible. Initial compatibility among
implementations has been achieved at previous interoperability events. The authors view this
extension as a pragmatic solution to an existing deployment challenge. This is the chosen
approach, and the extensions are specified in this document.

[15]

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 85

Acknowledgements
The XCON Working Group chairs, and , provided useful ideas for RFC
4582 . Additionally, , , , ,

, , , and provided useful comments during
the work with RFC 4582. The authors also acknowledge contributions to the revision of BFCP for
use over an unreliable transport from who had the initial idea,

, , , , , ,
, , , , , ,

, , , and . In the final phase,
 did a thorough review, revealing issues that needed clarification and changes. Useful

and important final reviews were done by . helped tremendously as
editor for changes addressing IESG review comments.

Adam Roach Alan Johnston
[3] Xiaotao Wu Paul Kyzivat Jonathan Rosenberg Miguel A. Garcia-Martin

Mary Barnes Ben Campbell Dave Morgan Oscar Novo

Geir Arne Sandbakken Alfred
E. Heggestad Trond G. Andersen Gonzalo Camarillo Roni Even Lorenzo Miniero Jörg Ott Eoin
McLeod Mark K. Thompson Hadriel Kaplan Dan Wing Cullen Jennings David Benham
Nivedita Melinkeri Woo Johnman Vijaya Mandava Alan Ford Ernst
Horvath

Mary Barnes Paul Jones

Authors' Addresses
Gonzalo Camarillo
Ericsson
Hirsalantie 11
FI- 02420 Jorvas
Finland

 gonzalo.camarillo@ericsson.com Email:

Keith Drage
 drageke@ntlworld.com Email:

Tom Kristensen
Jotron AS
Ringdalskogen 8

 3270 Larvik
Norway

 tom.kristensen@jotron.com, tomkri@ifi.uio.no Email:

Jörg Ott
Technical University Munich
Boltzmannstrasse 3

 85748 Garching
Germany

 ott@in.tum.de Email:

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 86

mailto:gonzalo.camarillo@ericsson.com
mailto:drageke@ntlworld.com
mailto:tom.kristensen@jotron.com,%20tomkri@ifi.uio.no
mailto:ott@in.tum.de

Charles Eckel
Cisco
707 Tasman Drive

, Milpitas California 95035
United States of America

 eckelcu@cisco.com Email:

RFC 8855 BFCP April 2020

Camarillo, et al. Standards Track Page 87

mailto:eckelcu@cisco.com

	RFC 8855
	The Binary Floor Control Protocol (BFCP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Scope
	3.1. Floor Creation
	3.2. Obtaining Information to Contact a Floor Control Server
	3.3. Obtaining Floor-Resource Associations
	3.4. Privileges of Floor Control

	4. Overview of Operation
	4.1. Floor Participant to Floor Control Server Interface
	4.2. Floor Chair to Floor Control Server Interface

	5. Packet Format
	5.1. COMMON-HEADER Format
	5.2. Attribute Format
	5.2.1. BENEFICIARY-ID
	5.2.2. FLOOR-ID
	5.2.3. FLOOR-REQUEST-ID
	5.2.4. PRIORITY
	5.2.5. REQUEST-STATUS
	5.2.6. ERROR-CODE
	5.2.6.1. Error Specific Details for Error Code 4

	5.2.7. ERROR-INFO
	5.2.8. PARTICIPANT-PROVIDED-INFO
	5.2.9. STATUS-INFO
	5.2.10. SUPPORTED-ATTRIBUTES
	5.2.11. SUPPORTED-PRIMITIVES
	5.2.12. USER-DISPLAY-NAME
	5.2.13. USER-URI
	5.2.14. BENEFICIARY-INFORMATION
	5.2.15. FLOOR-REQUEST-INFORMATION
	5.2.16. REQUESTED-BY-INFORMATION
	5.2.17. FLOOR-REQUEST-STATUS
	5.2.18. OVERALL-REQUEST-STATUS

	5.3. Message Format
	5.3.1. FloorRequest
	5.3.2. FloorRelease
	5.3.3. FloorRequestQuery
	5.3.4. FloorRequestStatus
	5.3.5. UserQuery
	5.3.6. UserStatus
	5.3.7. FloorQuery
	5.3.8. FloorStatus
	5.3.9. ChairAction
	5.3.10. ChairActionAck
	5.3.11. Hello
	5.3.12. HelloAck
	5.3.13. Error
	5.3.14. FloorRequestStatusAck
	5.3.15. FloorStatusAck
	5.3.16. Goodbye
	5.3.17. GoodbyeAck

	6. Transport
	6.1. Reliable Transport
	6.2. Unreliable Transport
	6.2.1. Congestion Control
	6.2.2. ICMP Error Handling
	6.2.3. Fragmentation Handling
	6.2.4. NAT Traversal

	7. Lower-Layer Security
	8. Protocol Transactions
	8.1. Client Behavior
	8.2. Server Behavior
	8.3. Timers
	8.3.1. Request Retransmission Timer, T1
	8.3.2. Response Retransmission Timer, T2
	8.3.3. Timer Values

	9. Authentication and Authorization
	9.1. TLS/DTLS Based Mutual Authentication

	10. Floor Participant Operations
	10.1. Requesting a Floor
	10.1.1. Sending a FloorRequest Message
	10.1.2. Receiving a Response
	10.1.3. Reception of a Subsequent FloorRequestStatus Message

	10.2. Cancelling a Floor Request and Releasing a Floor
	10.2.1. Sending a FloorRelease Message
	10.2.2. Receiving a Response

	11. Chair Operations
	11.1. Sending a ChairAction Message
	11.2. Receiving a Response

	12. General Client Operations
	12.1. Requesting Information about Floors
	12.1.1. Sending a FloorQuery Message
	12.1.2. Receiving a Response
	12.1.3. Reception of a Subsequent FloorStatus Message

	12.2. Requesting Information about Floor Requests
	12.2.1. Sending a FloorRequestQuery Message
	12.2.2. Receiving a Response

	12.3. Requesting Information about a User
	12.3.1. Sending a UserQuery Message
	12.3.2. Receiving a Response

	12.4. Obtaining the Capabilities of a Floor Control Server
	12.4.1. Sending a Hello Message
	12.4.2. Receiving Responses

	13. Floor Control Server Operations
	13.1. Reception of a FloorRequest Message
	13.1.1. Generating the First FloorRequestStatus Message
	13.1.2. Generation of Subsequent FloorRequestStatus Messages

	13.2. Reception of a FloorRequestQuery Message
	13.3. Reception of a UserQuery Message
	13.4. Reception of a FloorRelease Message
	13.5. Reception of a FloorQuery Message
	13.5.1. Generation of the First FloorStatus Message
	13.5.2. Generation of Subsequent FloorStatus Messages

	13.6. Reception of a ChairAction Message
	13.7. Reception of a Hello Message
	13.8. Error Message Generation

	14. Security Considerations
	15. IANA Considerations
	15.1. Attributes Subregistry
	15.2. Primitives Subregistry
	15.3. Request Statuses Subregistry
	15.4. Error Codes Subregistry

	16. Changes from RFC 4582
	16.1. Extensions for an Unreliable Transport
	16.2. Other Changes

	17. References
	17.1. Normative References
	17.2. Informative References

	Appendix A. Example Call Flows for BFCP over an Unreliable Transport
	Appendix B. Motivation for Supporting an Unreliable Transport
	B.1. Motivation
	B.1.1. Alternatives Considered
	B.1.1.1. ICE TCP
	B.1.1.2. Teredo
	B.1.1.3. GUT
	B.1.1.4. UPnP IGD
	B.1.1.5. NAT PMP
	B.1.1.6. SCTP
	B.1.1.7. BFCP over UDP Transport

	Acknowledgements
	Authors' Addresses

