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Abstract
The framework for Web Real-Time Communication (WebRTC) provides support for direct
interactive rich communication using audio, video, text, collaboration, games, etc. between two
peers' web browsers. This memo describes the media transport aspects of the WebRTC
framework. It specifies how the Real-time Transport Protocol (RTP) is used in the WebRTC
context and gives requirements for which RTP features, profiles, and extensions need to be
supported.
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1. Introduction 
The  provides a framework for delivery of audio
and video teleconferencing data and other real-time media applications. Previous work has
defined the RTP protocol, along with numerous profiles, payload formats, and other extensions.
When combined with appropriate signaling, these form the basis for many teleconferencing
systems.

The Web Real-Time Communication (WebRTC) framework provides the protocol building blocks
to support direct, interactive, real-time communication using audio, video, collaboration, games,
etc. between two peers' web browsers. This memo describes how the RTP framework is to be
used in the WebRTC context. It proposes a baseline set of RTP features that are to be
implemented by all WebRTC endpoints, along with suggested extensions for enhanced
functionality.

This memo specifies a protocol intended for use within the WebRTC framework but is not
restricted to that context. An overview of the WebRTC framework is given in .

The structure of this memo is as follows. Section 2 outlines our rationale for preparing this memo
and choosing these RTP features. Section 3 defines terminology. Requirements for core RTP
protocols are described in Section 4, and suggested RTP extensions are described in Section 5. 
Section 6 outlines mechanisms that can increase robustness to network problems, while Section
7 describes congestion control and rate adaptation mechanisms. The discussion of mandated RTP
mechanisms concludes in Section 8 with a review of performance monitoring and network
management tools. Section 9 gives some guidelines for future incorporation of other RTP and RTP
Control Protocol (RTCP) extensions into this framework. Section 10 describes requirements
placed on the signaling channel. Section 11 discusses the relationship between features of the
RTP framework and the WebRTC application programming interface (API), and Section 12
discusses RTP implementation considerations. The memo concludes with 

 and .

Real-time Transport Protocol (RTP) [RFC3550]

[RFC8825]

security considerations
(Section 13) IANA considerations (Section 14)

2. Rationale 
The RTP framework comprises the RTP data transfer protocol, the RTP control protocol, and
numerous RTP payload formats, profiles, and extensions. This range of add-ons has allowed RTP
to meet various needs that were not envisaged by the original protocol designers and support
many new media encodings, but it raises the question of what extensions are to be supported by
new implementations. The development of the WebRTC framework provides an opportunity to
review the available RTP features and extensions and define a common baseline RTP feature set
for all WebRTC endpoints. This builds on the past 20 years of RTP development to mandate the
use of extensions that have shown widespread utility, while still remaining compatible with the
wide installed base of RTP implementations where possible.

RFC 8834 RTP for WebRTC October 2020

Perkins, et al. Standards Track Page 4



RTP and RTCP extensions that are not discussed in this document can be implemented by
WebRTC endpoints if they are beneficial for new use cases. However, they are not necessary to
address the WebRTC use cases and requirements identified in .

While the baseline set of RTP features and extensions defined in this memo is targeted at the
requirements of the WebRTC framework, it is expected to be broadly useful for other
conferencing-related uses of RTP. In particular, it is likely that this set of RTP features and
extensions will be appropriate for other desktop or mobile video-conferencing systems, or for
room-based high-quality telepresence applications.

[RFC7478]

WebRTC MediaStream:

MediaStreamTrack:

Transport-layer flow:

Bidirectional transport-layer flow:

3. Terminology 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here. Lower- or mixed-case uses of these key words are not to be
interpreted as carrying special significance in this memo.

We define the following additional terms:

The MediaStream concept defined by the W3C in the 
. A MediaStream consists of zero or more MediaStreamTracks. 

Part of the MediaStream concept defined by the W3C in the 
. A MediaStreamTrack is an individual stream of media from any type

of media source such as a microphone or a camera, but conceptual sources such as an audio
mix or a video composition are also possible. 

A unidirectional flow of transport packets that are identified by a
particular 5-tuple of source IP address, source port, destination IP address, destination port,
and transport protocol. 

A bidirectional transport-layer flow is a transport-layer flow
that is symmetric. That is, the transport-layer flow in the reverse direction has a 5-tuple
where the source and destination address and ports are swapped compared to the forward
path transport-layer flow, and the transport protocol is the same. 

This document uses the terminology from  and . Other terms are used
according to their definitions from the . In particular, note the
following frequently used terms: RTP stream, RTP session, and endpoint.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

WebRTC API [W3C-
MEDIA-CAPTURE]

WebRTC API
[W3C-MEDIA-CAPTURE]

[RFC7656] [RFC8825]
RTP specification [RFC3550]

4. WebRTC Use of RTP: Core Protocols 
The following sections describe the core features of RTP and RTCP that need to be implemented,
along with the mandated RTP profiles. Also described are the core extensions providing essential
features that all WebRTC endpoints need to implement to function effectively on today's
networks.
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4.1. RTP and RTCP 
The  is  to be implemented as the media
transport protocol for WebRTC. RTP itself comprises two parts: the RTP data transfer protocol
and the RTP Control Protocol (RTCP). RTCP is a fundamental and integral part of RTP and 
be implemented and used in all WebRTC endpoints.

The following RTP and RTCP features are sometimes omitted in limited-functionality
implementations of RTP, but they are  in all WebRTC endpoints:

Support for use of multiple simultaneous synchronization source (SSRC) values in a single
RTP session, including support for RTP endpoints that send many SSRC values
simultaneously, following  and . The RTCP optimizations for multi-SSRC
sessions defined in   be supported; if supported, the usage  be signaled. 
Random choice of SSRC on joining a session; collision detection and resolution for SSRC
values (see also Section 4.8). 
Support for reception of RTP data packets containing contributing source (CSRC) lists, as
generated by RTP mixers, and RTCP packets relating to CSRCs. 
Sending correct synchronization information in the RTCP Sender Reports, to allow receivers
to implement lip synchronization; see Section 5.2.1 regarding support for the rapid RTP
synchronization extensions. 
Support for multiple synchronization contexts. Participants that send multiple simultaneous
RTP packet streams  do so as part of a single synchronization context, using a single
RTCP CNAME for all streams and allowing receivers to play the streams out in a
synchronized manner. For compatibility with potential future versions of this specification,
or for interoperability with non-WebRTC devices through a gateway, receivers  support
multiple synchronization contexts, indicated by the use of multiple RTCP CNAMEs in an RTP
session. This specification mandates the usage of a single CNAME when sending RTP streams
in some circumstances; see Section 4.9. 
Support for sending and receiving RTCP SR, RR, Source Description (SDES), and BYE packet
types. Note that support for other RTCP packet types is  unless mandated by other
parts of this specification. Note that additional RTCP packet types are used by the 

 and the other . WebRTC endpoints that
implement the Session Description Protocol (SDP) bundle negotiation extension will use the
SDP Grouping Framework "mid" attribute to identify media streams. Such endpoints 
implement the RTCP SDES media identification (MID) item described in . 
Support for multiple endpoints in a single RTP session, and for scaling the RTCP transmission
interval according to the number of participants in the session; support for randomized
RTCP transmission intervals to avoid synchronization of RTCP reports; support for RTCP
timer reconsideration ( ) and reverse reconsideration (

). 
Support for configuring the RTCP bandwidth as a fraction of the media bandwidth, and for
configuring the fraction of the RTCP bandwidth allocated to senders -- e.g., using the SDP "b="
line  . 

Real-time Transport Protocol (RTP) [RFC3550] REQUIRED

MUST

REQUIRED

• 

[RFC3550] [RFC8108]
[RFC8861] MAY MUST

• 

• 

• 

• 
SHOULD

MUST

• 
OPTIONAL

RTP/SAVPF
profile (Section 4.2) RTCP extensions (Section 5)

MUST
[RFC8843]

• 

Section 6.3.6 of [RFC3550] Section 6.3.4
of [RFC3550]

• 

[RFC4566] [RFC3556]
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Support for the reduced minimum RTCP reporting interval described in 
. When using the reduced minimum RTCP reporting interval, the fixed

(nonreduced) minimum interval  be used when calculating the participant timeout
interval (see Sections 6.2 and 6.3.5 of ). The delay before sending the initial
compound RTCP packet can be set to zero (see  as updated by 

). 
Support for discontinuous transmission. RTP allows endpoints to pause and resume
transmission at any time. When resuming, the RTP sequence number will increase by one, as
usual, while the increase in the RTP timestamp value will depend on the duration of the
pause. Discontinuous transmission is most commonly used with some audio payload
formats, but it is not audio specific and can be used with any RTP payload format. 
Ignore unknown RTCP packet types and RTP header extensions. This is to ensure robust
handling of future extensions, middlebox behaviors, etc., that can result in receiving RTP
header extensions or RTCP packet types that were not signaled. If a compound RTCP packet
that contains a mixture of known and unknown RTCP packet types is received, the known
packet types need to be processed as usual, with only the unknown packet types being
discarded. 

It is known that a significant number of legacy RTP implementations, especially those targeted at
systems with only Voice over IP (VoIP), do not support all of the above features and in some cases
do not support RTCP at all. Implementers are advised to consider the requirements for graceful
degradation when interoperating with legacy implementations.

Other implementation considerations are discussed in Section 12.

• Section 6.2 of
[RFC3550]

MUST
[RFC3550]

Section 6.2 of [RFC3550]
[RFC8108]

• 

• 

4.2. Choice of the RTP Profile 
The complete specification of RTP for a particular application domain requires the choice of an
RTP profile. For WebRTC use, the 

, as extended by ,  be implemented. The RTP/SAVPF profile is the
combination of the basic , the 

, and the .

The RTCP-based feedback extensions  are needed for the improved RTCP timer model.
This allows more flexible transmission of RTCP packets in response to events, rather than strictly
according to bandwidth, and is vital for being able to report congestion signals as well as media
events. These extensions also allow saving RTCP bandwidth, and an endpoint will commonly
only use the full RTCP bandwidth allocation if there are many events that require feedback. The
timer rules are also needed to make use of the RTP conferencing extensions discussed in Section
5.1.

Note: The enhanced RTCP timer model defined in the RTP/AVPF profile is backwards
compatible with legacy systems that implement only the RTP/AVP or RTP/SAVP
profile, given some constraints on parameter configuration such as the RTCP

extended secure RTP profile for RTCP-based feedback (RTP/
SAVPF) [RFC5124] [RFC7007] MUST

RTP/AVP profile [RFC3551] RTP profile for RTCP-based feedback
(RTP/AVPF) [RFC4585] secure RTP profile (RTP/SAVP) [RFC3711]

[RFC4585]
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bandwidth value and "trr‑int". The most important factor for interworking with
RTP/(S)AVP endpoints via a gateway is to set the "trr-int" parameter to a value
representing 4 seconds; see .

The secure RTP (SRTP) profile extensions  are needed to provide media encryption,
integrity protection, replay protection, and a limited form of source authentication. WebRTC
endpoints  send packets using the basic RTP/AVP profile or the RTP/AVPF profile; they 

 employ the full RTP/SAVPF profile to protect all RTP and RTCP packets that are generated.
In other words, implementations  use SRTP and SRTCP. The RTP/SAVPF profile  be
configured using the cipher suites, DTLS-SRTP protection profiles, keying mechanisms, and other
parameters described in .

Section 7.1.3 of [RFC8108]

[RFC3711]

MUST NOT
MUST

MUST MUST

[RFC8827]

4.3. Choice of RTP Payload Formats 
Mandatory-to-implement audio codecs and RTP payload formats for WebRTC endpoints are
defined in . Mandatory-to-implement video codecs and RTP payload formats for
WebRTC endpoints are defined in . WebRTC endpoints  additionally implement any
other codec for which an RTP payload format and associated signaling has been defined.

WebRTC endpoints cannot assume that the other participants in an RTP session understand any
RTP payload format, no matter how common. The mapping between RTP payload type numbers
and specific configurations of particular RTP payload formats  be agreed before those
payload types/formats can be used. In an SDP context, this can be done using the "a=rtpmap:"
and "a=fmtp:" attributes associated with an "m=" line, along with any other SDP attributes
needed to configure the RTP payload format.

Endpoints can signal support for multiple RTP payload formats or multiple configurations of a
single RTP payload format, as long as each unique RTP payload format configuration uses a
different RTP payload type number. As outlined in Section 4.8, the RTP payload type number is
sometimes used to associate an RTP packet stream with a signaling context. This association is
possible provided unique RTP payload type numbers are used in each context. For example, an
RTP packet stream can be associated with an SDP "m=" line by comparing the RTP payload type
numbers used by the RTP packet stream with payload types signaled in the "a=rtpmap:" lines in
the media sections of the SDP. This leads to the following considerations:

If RTP packet streams are being associated with signaling contexts based on the RTP payload
type, then the assignment of RTP payload type numbers  be unique across signaling
contexts. 

If the same RTP payload format configuration is used in multiple contexts, then a different
RTP payload type number has to be assigned in each context to ensure uniqueness. 

If the RTP payload type number is not being used to associate RTP packet streams with a
signaling context, then the same RTP payload type number can be used to indicate the exact
same RTP payload format configuration in multiple contexts. 

[RFC7874]
[RFC7742] MAY

MUST

MUST
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A single RTP payload type number  be assigned to different RTP payload formats, or
different configurations of the same RTP payload format, within a single RTP session (note that
the "m=" lines in an  form a single RTP session).

An endpoint that has signaled support for multiple RTP payload formats  be able to accept
data in any of those payload formats at any time, unless it has previously signaled limitations on
its decoding capability. This requirement is constrained if several types of media (e.g., audio and
video) are sent in the same RTP session. In such a case, a source (SSRC) is restricted to switching
only between the RTP payload formats signaled for the type of media that is being sent by that
source; see Section 4.4. To support rapid rate adaptation by changing codecs, RTP does not
require advance signaling for changes between RTP payload formats used by a single SSRC that
were signaled during session setup.

If performing changes between two RTP payload types that use different RTP clock rates, an RTP
sender  follow the recommendations in . RTP receivers  follow
the recommendations in Section 4.3 of  in order to support sources that switch
between clock rates in an RTP session. These recommendations for receivers are backwards
compatible with the case where senders use only a single clock rate.

MUST NOT

SDP BUNDLE group [RFC8843]

MUST

MUST Section 4.1 of [RFC7160] MUST
[RFC7160]

4.4. Use of RTP Sessions 
An association amongst a set of endpoints communicating using RTP is known as an RTP session 

. An endpoint can be involved in several RTP sessions at the same time. In a
multimedia session, each type of media has typically been carried in a separate RTP session (e.g.,
using one RTP session for the audio and a separate RTP session using a different transport-layer
flow for the video). WebRTC endpoints are  to implement support for multimedia
sessions in this way, separating each RTP session using different transport-layer flows for
compatibility with legacy systems (this is sometimes called session multiplexing).

In modern-day networks, however, with the widespread use of network address/port translators
(NAT/NAPT) and firewalls, it is desirable to reduce the number of transport-layer flows used by
RTP applications. This can be done by sending all the RTP packet streams in a single RTP session,
which will comprise a single transport-layer flow. This will prevent the use of some quality-of-
service mechanisms, as discussed in Section 12.1.3. Implementations are therefore also 

 to support transport of all RTP packet streams, independent of media type, in a single
RTP session using a single transport-layer flow, according to  (this is sometimes called
SSRC multiplexing). If multiple types of media are to be used in a single RTP session, all
participants in that RTP session  agree to this usage. In an SDP context, the mechanisms
described in  can be used to signal such a bundle of RTP packet streams forming a
single RTP session.

Further discussion about the suitability of different RTP session structures and multiplexing
methods to different scenarios can be found in .

[RFC3550]

REQUIRED

REQUIRED
[RFC8860]

MUST
[RFC8843]

[MULTIPLEX]
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4.6. Reduced Size RTCP 
RTCP packets are usually sent as compound RTCP packets, and  requires that those
compound packets start with a Sender Report (SR) or Receiver Report (RR) packet. When using
frequent RTCP feedback messages under the RTP/AVPF profile , these statistics are not
needed in every packet, and they unnecessarily increase the mean RTCP packet size. This can
limit the frequency at which RTCP packets can be sent within the RTCP bandwidth share.

To avoid this problem,  specifies how to reduce the mean RTCP message size and allow
for more frequent feedback. Frequent feedback, in turn, is essential to make real-time
applications quickly aware of changing network conditions and to allow them to adapt their
transmission and encoding behavior. Implementations  support sending and receiving
noncompound RTCP feedback packets . Use of noncompound RTCP packets  be
negotiated using the signaling channel. If SDP is used for signaling, this negotiation  use the
attributes defined in . For backwards compatibility, implementations are also 

 to support the use of compound RTCP feedback packets if the remote endpoint does
not agree to the use of noncompound RTCP in the signaling exchange.

4.7. Symmetric RTP/RTCP 
To ease traversal of NAT and firewall devices, implementations are  to implement and
use . The reason for using symmetric RTP is primarily to avoid issues
with NATs and firewalls by ensuring that the send and receive RTP packet streams, as well as
RTCP, are actually bidirectional transport-layer flows. This will keep alive the NAT and firewall
pinholes and help indicate consent that the receive direction is a transport-layer flow the

4.5. RTP and RTCP Multiplexing 
Historically, RTP and RTCP have been run on separate transport-layer flows (e.g., two UDP ports
for each RTP session, one for RTP and one for RTCP). With the increased use of Network Address/
Port Translation (NAT/NAPT), this has become problematic, since maintaining multiple NAT
bindings can be costly. It also complicates firewall administration, since multiple ports need to be
opened to allow RTP traffic. To reduce these costs and session setup times, implementations are 

 to support multiplexing RTP data packets and RTCP control packets on a single
transport-layer flow . Such RTP and RTCP multiplexing  be negotiated in the
signaling channel before it is used. If SDP is used for signaling, this negotiation  use the
mechanism defined in . Implementations can also support sending RTP and RTCP on
separate transport-layer flows, but this is  to implement. If an implementation does not
support RTP and RTCP sent on separate transport-layer flows, it  indicate that using the
mechanism defined in .

Note that the use of RTP and RTCP multiplexed onto a single transport-layer flow ensures that
there is occasional traffic sent on that port, even if there is no active media traffic. This can be
useful to keep NAT bindings alive .

REQUIRED
[RFC5761] MUST

MUST
[RFC5761]

OPTIONAL
MUST

[RFC8858]

[RFC6263]

[RFC3550]

[RFC4585]

[RFC5506]

MUST
[RFC5506] MUST

MUST
[RFC5506]

REQUIRED

REQUIRED
symmetric RTP [RFC4961]
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intended recipient actually wants. In addition, it saves resources, specifically ports at the
endpoints, but also in the network, because the NAT mappings or firewall state is not
unnecessarily bloated. The amount of per-flow QoS state kept in the network is also reduced.

4.8. Choice of RTP Synchronization Source (SSRC) 
Implementations are  to support signaled RTP synchronization source (SSRC)
identifiers. If SDP is used, this  be done using the "a=ssrc:" SDP attribute defined in Sections 
4.1 and 5 of  and the "previous-ssrc" source attribute defined in 

; other per-SSRC attributes defined in   be supported.

While support for signaled SSRC identifiers is mandated, their use in an RTP session is .
Implementations  be prepared to accept RTP and RTCP packets using SSRCs that have not
been explicitly signaled ahead of time. Implementations  support random SSRC assignment
and  support SSRC collision detection and resolution, according to . When using
signaled SSRC values, collision detection  be performed as described in 

.

It is often desirable to associate an RTP packet stream with a non-RTP context. For users of the
WebRTC API, a mapping between SSRCs and MediaStreamTracks is provided per Section 11. For
gateways or other usages, it is possible to associate an RTP packet stream with an "m=" line in a
session description formatted using SDP. If SSRCs are signaled, this is straightforward (in SDP, the
"a=ssrc:" line will be at the media level, allowing a direct association with an "m=" line). If SSRCs
are not signaled, the RTP payload type numbers used in an RTP packet stream are often sufficient
to associate that packet stream with a signaling context. For example, if RTP payload type
numbers are assigned as described in Section 4.3 of this memo, the RTP payload types used by an
RTP packet stream can be compared with values in SDP "a=rtpmap:" lines, which are at the
media level in SDP and so map to an "m=" line.

REQUIRED
MUST

[RFC5576] Section 6.2 of
[RFC5576] [RFC5576] MAY

OPTIONAL
MUST

MUST
MUST [RFC3550]

MUST Section 5 of
[RFC5576]

4.9. Generation of the RTCP Canonical Name (CNAME) 
The RTCP Canonical Name (CNAME) provides a persistent transport-level identifier for an RTP
endpoint. While the SSRC identifier for an RTP endpoint can change if a collision is detected or
when the RTP application is restarted, its RTCP CNAME is meant to stay unchanged for the
duration of an , so that RTP endpoints can be uniquely
identified and associated with their RTP packet streams within a set of related RTP sessions.

Each RTP endpoint  have at least one RTCP CNAME, and that RTCP CNAME  be unique
within the RTCPeerConnection. RTCP CNAMEs identify a particular synchronization context -- i.e.,
all SSRCs associated with a single RTCP CNAME share a common reference clock. If an endpoint
has SSRCs that are associated with several unsynchronized reference clocks, and hence different
synchronization contexts, it will need to use multiple RTCP CNAMEs, one for each
synchronization context.

RTCPeerConnection [W3C.WebRTC]

MUST MUST
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Taking the discussion in Section 11 into account, a WebRTC endpoint  use more than
one RTCP CNAME in the RTP sessions belonging to a single RTCPeerConnection (that is, an
RTCPeerConnection forms a synchronization context). RTP middleboxes  generate RTP
packet streams associated with more than one RTCP CNAME, to allow them to avoid having to
resynchronize media from multiple different endpoints that are part of a multiparty RTP session.

The  includes guidelines for choosing a unique RTP CNAME, but these
are not sufficient in the presence of NAT devices. In addition, long-term persistent identifiers can
be problematic from a . Accordingly, a WebRTC endpoint 
generate a new, unique, short-term persistent RTCP CNAME for each RTCPeerConnection,
following , with a single exception; if explicitly requested at creation, an
RTCPeerConnection  use the same CNAME as an existing RTCPeerConnection within their
common same-origin context.

A WebRTC endpoint  support reception of any CNAME that matches the syntax limitations
specified by the  and cannot assume that any CNAME will be chosen
according to the form suggested above.

MUST NOT

MAY

RTP specification [RFC3550]

privacy viewpoint (Section 13) MUST

[RFC7022]
MAY

MUST
RTP specification [RFC3550]

4.10. Handling of Leap Seconds 
The guidelines given in  regarding handling of leap seconds to limit their impact on
RTP media play-out and synchronization  be followed.

[RFC7164]
SHOULD

5. WebRTC Use of RTP: Extensions 
There are a number of RTP extensions that are either needed to obtain full functionality, or
extremely useful to improve on the baseline performance, in the WebRTC context. One set of
these extensions is related to conferencing, while others are more generic in nature. The
following subsections describe the various RTP extensions mandated or suggested for use within
WebRTC.

5.1. Conferencing Extensions and Topologies 
RTP is a protocol that inherently supports group communication. Groups can be implemented by
having each endpoint send its RTP packet streams to an RTP middlebox that redistributes the
traffic, by using a mesh of unicast RTP packet streams between endpoints, or by using an IP
multicast group to distribute the RTP packet streams. These topologies can be implemented in a
number of ways as discussed in .

While the use of IP multicast groups is popular in IPTV systems, the topologies based on RTP
middleboxes are dominant in interactive video-conferencing environments. Topologies based on
a mesh of unicast transport-layer flows to create a common RTP session have not seen
widespread deployment to date. Accordingly, WebRTC endpoints are not expected to support
topologies based on IP multicast groups or mesh-based topologies, such as a point-to-multipoint
mesh configured as a single RTP session ("Topo-Mesh" in the terminology of ).

[RFC7667]

[RFC7667]
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However, a point-to-multipoint mesh constructed using several RTP sessions, implemented in
WebRTC using independent , can be expected to be used in
WebRTC and needs to be supported.

WebRTC endpoints implemented according to this memo are expected to support all the
topologies described in  where the RTP endpoints send and receive unicast RTP packet
streams to and from some peer device, provided that peer can participate in performing
congestion control on the RTP packet streams. The peer device could be another RTP endpoint, or
it could be an RTP middlebox that redistributes the RTP packet streams to other RTP endpoints.
This limitation means that some of the RTP middlebox-based topologies are not suitable for use
in WebRTC. Specifically:

Video-switching Multipoint Control Units (MCUs) (Topo-Video-switch-MCU)  be
used, since they make the use of RTCP for congestion control and quality-of-service reports
problematic (see ). 
The Relay-Transport Translator (Topo-PtM-Trn-Translator) topology  be used,
because its safe use requires a congestion control algorithm or RTP circuit breaker that
handles point to multipoint, which has not yet been standardized. 

The following topology can be used, however it has some issues worth noting:

Content-modifying MCUs with RTCP termination (Topo-RTCP-terminating-MCU)  be used.
Note that in this RTP topology, RTP loop detection and identification of active senders is the
responsibility of the WebRTC application; since the clients are isolated from each other at the
RTP layer, RTP cannot assist with these functions (see ). 

The RTP extensions described in Sections 5.1.1 to 5.1.6 are designed to be used with centralized
conferencing, where an RTP middlebox (e.g., a conference bridge) receives a participant's RTP
packet streams and distributes them to the other participants. These extensions are not
necessary for interoperability; an RTP endpoint that does not implement these extensions will
work correctly but might offer poor performance. Support for the listed extensions will greatly
improve the quality of experience; to provide a reasonable baseline quality, some of these
extensions are mandatory to be supported by WebRTC endpoints.

The RTCP conferencing extensions are defined in 
 and 

; they are fully usable by the 
.

RTCPeerConnections [W3C.WebRTC]

[RFC7667]

• SHOULD NOT

Section 3.8 of [RFC7667]
• SHOULD NOT

• MAY

Section 3.9 of [RFC7667]

"Extended RTP Profile for Real-time Transport
Control Protocol (RTCP)-Based Feedback (RTP/AVPF)" [RFC4585] "Codec Control Messages in
the RTP Audio-Visual Profile with Feedback (AVPF)" [RFC5104]
secure variant of this profile (RTP/SAVPF) [RFC5124]

5.1.1. Full Intra Request (FIR) 

The Full Intra Request message is defined in Sections 3.5.1 and 4.3.1 of 
. It is used to make the mixer request a new Intra picture from a participant in the

session. This is used when switching between sources to ensure that the receivers can decode the
video or other predictive media encoding with long prediction chains. WebRTC endpoints that
are sending media  understand and react to FIR feedback messages they receive, since this
greatly improves the user experience when using centralized mixer-based conferencing. Support
for sending FIR messages is .

Codec Control Messages
[RFC5104]

MUST

OPTIONAL
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5.1.2. Picture Loss Indication (PLI) 

The Picture Loss Indication message is defined in .
It is used by a receiver to tell the sending encoder that it lost the decoder context and would like
to have it repaired somehow. This is semantically different from the Full Intra Request above, as
there could be multiple ways to fulfill the request. WebRTC endpoints that are sending media 

 understand and react to PLI feedback messages as a loss-tolerance mechanism. Receivers 
 send PLI messages.

5.1.3. Slice Loss Indication (SLI) 

The Slice Loss Indication message is defined in . It
is used by a receiver to tell the encoder that it has detected the loss or corruption of one or more
consecutive macro blocks and would like to have these repaired somehow. It is 
that receivers generate SLI feedback messages if slices are lost when using a codec that supports
the concept of macro blocks. A sender that receives an SLI feedback message  attempt to
repair the lost slice(s).

5.1.4. Reference Picture Selection Indication (RPSI) 

Reference Picture Selection Indication (RPSI) messages are defined in 
. Some video-encoding standards allow the use of older reference pictures

than the most recent one for predictive coding. If such a codec is in use, and if the encoder has
learned that encoder-decoder synchronization has been lost, then a known-as-correct reference
picture can be used as a base for future coding. The RPSI message allows this to be signaled.
Receivers that detect that encoder-decoder synchronization has been lost  generate an
RPSI feedback message if the codec being used supports reference-picture selection. An RTP
packet-stream sender that receives such an RPSI message  act on that messages to change
the reference picture, if it is possible to do so within the available bandwidth constraints and
with the codec being used.

5.1.5. Temporal-Spatial Trade-Off Request (TSTR) 

The temporal-spatial trade-off request and notification are defined in Sections 3.5.2 and 4.3.2 of 
. This request can be used to ask the video encoder to change the trade-off it makes

between temporal and spatial resolution -- for example, to prefer high spatial image quality but
low frame rate. Support for TSTR requests and notifications is .

Section 6.3.1 of the RTP/AVPF profile [RFC4585]

MUST
MAY

Section 6.3.2 of the RTP/AVPF profile [RFC4585]

RECOMMENDED

SHOULD

Section 6.3.3 of the RTP/
AVPF profile [RFC4585]

SHOULD

SHOULD

[RFC5104]

OPTIONAL

5.1.6. Temporary Maximum Media Stream Bit Rate Request (TMMBR) 

The Temporary Maximum Media Stream Bit Rate Request (TMMBR) feedback message is defined
in Sections 3.5.4 and 4.2.1 of . This request and its
corresponding Temporary Maximum Media Stream Bit Rate Notification (TMMBN) message 

 are used by a media receiver to inform the sending party that there is a current
limitation on the amount of bandwidth available to this receiver. There can be various reasons
for this: for example, an RTP mixer can use this message to limit the media rate of the sender
being forwarded by the mixer (without doing media transcoding) to fit the bottlenecks existing

Codec Control Messages [RFC5104]

[RFC5104]
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5.2. Header Extensions
The  provides the capability to include RTP header extensions
containing in-band data, but the format and semantics of the extensions are poorly specified. The
use of header extensions is  in WebRTC, but if they are used, they  be formatted
and signaled following the general mechanism for RTP header extensions defined in ,
since this gives well-defined semantics to RTP header extensions.

As noted in , the requirement from the RTP specification that header extensions are
"designed so that the header extension may be ignored"  stands. To be specific, header
extensions  only be used for data that can safely be ignored by the recipient without
affecting interoperability and  be used when the presence of the extension has
changed the form or nature of the rest of the packet in a way that is not compatible with the way
the stream is signaled (e.g., as defined by the payload type). Valid examples of RTP header
extensions might include metadata that is additional to the usual RTP information but that can
safely be ignored without compromising interoperability.

towards the other session participants. WebRTC endpoints that are sending media are 
to implement support for TMMBR messages and  follow bandwidth limitations set by a
TMMBR message received for their SSRC. The sending of TMMBR messages is .

REQUIRED
MUST

OPTIONAL

RTP specification [RFC3550]

OPTIONAL MUST
[RFC8285]

[RFC8285]
[RFC3550]

MUST
MUST NOT

5.2.1. Rapid Synchronization 

Many RTP sessions require synchronization between audio, video, and other content. This
synchronization is performed by receivers, using information contained in RTCP SR packets, as
described in the . This basic mechanism can be slow, however, so it is

 that the rapid RTP synchronization extensions described in  be
implemented in addition to RTCP SR-based synchronization.

This header extension uses the generic header extension framework described in  and
so needs to be negotiated before it can be used.

RTP specification [RFC3550]
RECOMMENDED [RFC6051]

[RFC8285]

5.2.2. Client-to-Mixer Audio Level 

The  is an RTP header extension used by an
endpoint to inform a mixer about the level of audio activity in the packet to which the header is
attached. This enables an RTP middlebox to make mixing or selection decisions without decoding
or detailed inspection of the payload, reducing the complexity in some types of mixers. It can
also save decoding resources in receivers, which can choose to decode only the most relevant
RTP packet streams based on audio activity levels.

The   be implemented. It is 
 that implementations be capable of encrypting the header extension according to 
, since the information contained in these header extensions can be considered

sensitive. The use of this encryption is ; however, usage of the encryption can be
explicitly disabled through API or signaling.

This header extension uses the generic header extension framework described in  and
so needs to be negotiated before it can be used.

client-to-mixer audio level extension [RFC6464]

client-to-mixer audio level header extension [RFC6464] MUST
REQUIRED
[RFC6904]

RECOMMENDED

[RFC8285]
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5.2.3. Mixer-to-Client Audio Level 

The  provides an endpoint with the audio
level of the different sources mixed into a common source stream by an RTP mixer. This enables
a user interface to indicate the relative activity level of each session participant, rather than just
being included or not based on the CSRC field. This is a pure optimization of non-critical
functions and is hence  to implement. If this header extension is implemented, it is 

 that implementations be capable of encrypting the header extension according to 
, since the information contained in these header extensions can be considered

sensitive. It is further  that this encryption be used, unless the encryption has
been explicitly disabled through API or signaling.

This header extension uses the generic header extension framework described in  and
so needs to be negotiated before it can be used.

mixer-to-client audio level header extension [RFC6465]

OPTIONAL
REQUIRED
[RFC6904]

RECOMMENDED

[RFC8285]

5.2.4. Media Stream Identification 

WebRTC endpoints that implement the SDP bundle negotiation extension will use the SDP
Grouping Framework "mid" attribute to identify media streams. Such endpoints 
implement the RTP MID header extension described in .

This header extension uses the generic header extension framework described in  and
so needs to be negotiated before it can be used.

MUST
[RFC8843]

[RFC8285]

5.2.5. Coordination of Video Orientation 

WebRTC endpoints that send or receive video  implement the coordination of video
orientation (CVO) RTP header extension as described in .

This header extension uses the generic header extension framework described in  and
so needs to be negotiated before it can be used.

MUST
Section 4 of [RFC7742]

[RFC8285]

6. WebRTC Use of RTP: Improving Transport Robustness 
There are tools that can make RTP packet streams robust against packet loss and reduce the
impact of loss on media quality. However, they generally add some overhead compared to a non-
robust stream. The overhead needs to be considered, and the aggregate bitrate  be rate
controlled to avoid causing network congestion (see Section 7). As a result, improving robustness
might require a lower base encoding quality but has the potential to deliver that quality with
fewer errors. The mechanisms described in the following subsections can be used to improve
tolerance to packet loss.

MUST
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6.1. Negative Acknowledgements and RTP Retransmission 
As a consequence of supporting the RTP/SAVPF profile, implementations can send negative
acknowledgements (NACKs) for RTP data packets . This feedback can be used to inform
a sender of the loss of particular RTP packets, subject to the capacity limitations of the RTCP
feedback channel. A sender can use this information to optimize the user experience by adapting
the media encoding to compensate for known lost packets.

RTP packet stream senders are  to understand the generic NACK message defined in 
, but they  choose to ignore some or all of this feedback (following 

). Receivers  send NACKs for missing RTP packets. Guidelines on
when to send NACKs are provided in . It is not expected that a receiver will send a
NACK for every lost RTP packet; rather, it needs to consider the cost of sending NACK feedback
and the importance of the lost packet to make an informed decision on whether it is worth telling
the sender about a packet-loss event.

The  offers the ability to retransmit lost packets
based on NACK feedback. Retransmission needs to be used with care in interactive real-time
applications to ensure that the retransmitted packet arrives in time to be useful, but it can be
effective in environments with relatively low network RTT. (An RTP sender can estimate the RTT
to the receivers using the information in RTCP SR and RR packets, as described at the end of 

). The use of retransmissions can also increase the forward RTP
bandwidth and can potentially cause increased packet loss if the original packet loss was caused
by network congestion. Note, however, that retransmission of an important lost packet to repair
decoder state can have lower cost than sending a full intra frame. It is not appropriate to blindly
retransmit RTP packets in response to a NACK. The importance of lost packets and the likelihood
of them arriving in time to be useful need to be considered before RTP retransmission is used.

Receivers are  to implement support for RTP retransmission packets  sent
using SSRC multiplexing and  also support RTP retransmission packets sent using session
multiplexing. Senders  send RTP retransmission packets in response to NACKs if support for
the RTP retransmission payload format has been negotiated and the sender believes it is useful to
send a retransmission of the packet(s) referenced in the NACK. Senders do not need to retransmit
every NACKed packet.

[RFC4585]

REQUIRED
Section 6.2.1 of [RFC4585] MAY
Section 4.2 of [RFC4585] MAY

[RFC4585]

RTP retransmission payload format [RFC4588]

Section 6.4.1 of [RFC3550]

REQUIRED [RFC4588]
MAY

MAY

6.2. Forward Error Correction (FEC) 
The use of Forward Error Correction (FEC) can provide an effective protection against some
degree of packet loss, at the cost of steady bandwidth overhead. There are several FEC schemes
that are defined for use with RTP. Some of these schemes are specific to a particular RTP payload
format, and others operate across RTP packets and can be used with any payload format. Note
that using redundant encoding or FEC will lead to increased play-out delay, which needs to be
considered when choosing FEC schemes and their parameters.

WebRTC endpoints  follow the recommendations for FEC use given in . WebRTC
endpoints  support other types of FEC, but these  be negotiated before they are used.

MUST [RFC8854]
MAY MUST
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7. WebRTC Use of RTP: Rate Control and Media Adaptation 
WebRTC will be used in heterogeneous network environments using a variety of link
technologies, including both wired and wireless links, to interconnect potentially large groups of
users around the world. As a result, the network paths between users can have widely varying
one-way delays, available bitrates, load levels, and traffic mixtures. Individual endpoints can
send one or more RTP packet streams to each participant, and there can be several participants.
Each of these RTP packet streams can contain different types of media, and the type of media,
bitrate, and number of RTP packet streams as well as transport-layer flows can be highly
asymmetric. Non-RTP traffic can share the network paths with RTP transport-layer flows. Since
the network environment is not predictable or stable, WebRTC endpoints  ensure that the
RTP traffic they generate can adapt to match changes in the available network capacity.

The quality of experience for users of WebRTC is very dependent on effective adaptation of the
media to the limitations of the network. Endpoints have to be designed so they do not transmit
significantly more data than the network path can support, except for very short time periods;
otherwise, high levels of network packet loss or delay spikes will occur, causing media quality
degradation. The limiting factor on the capacity of the network path might be the link
bandwidth, or it might be competition with other traffic on the link (this can be non-WebRTC
traffic, traffic due to other WebRTC flows, or even competition with other WebRTC flows in the
same session).

An effective media congestion control algorithm is therefore an essential part of the WebRTC
framework. However, at the time of this writing, there is no standard congestion control
algorithm that can be used for interactive media applications such as WebRTC's flows. Some
requirements for congestion control algorithms for RTCPeerConnections are discussed in 

. If a standardized congestion control algorithm that satisfies these requirements is
developed in the future, this memo will need to be updated to mandate its use.

7.1. Boundary Conditions and Circuit Breakers 
WebRTC endpoints  implement the RTP circuit breaker algorithm that is described in 

. The RTP circuit breaker is designed to enable applications to recognize and react to
situations of extreme network congestion. However, since the RTP circuit breaker might not be
triggered until congestion becomes extreme, it cannot be considered a substitute for congestion
control, and applications  also implement congestion control to allow them to adapt to
changes in network capacity. The congestion control algorithm will have to be proprietary until a
standardized congestion control algorithm is available. Any future RTP congestion control
algorithms are expected to operate within the envelope allowed by the circuit breaker.

The session-establishment signaling will also necessarily establish boundaries to which the
media bitrate will conform. The choice of media codecs provides upper and lower bounds on the
supported bitrates that the application can utilize to provide useful quality, and the packetization
choices that exist. In addition, the signaling channel can establish maximum media bitrate
boundaries using, for example, the SDP "b=AS:" or "b=CT:" lines and the RTP/AVPF TMMBR

MUST

[RFC8836]

MUST
[RFC8083]

MUST
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messages (see Section 5.1.6 of this memo). Signaled bandwidth limitations, such as SDP "b=AS:" or
"b=CT:" lines received from the peer,  be followed when sending RTP packet streams. A
WebRTC endpoint receiving media  signal its bandwidth limitations. These limitations
have to be based on known bandwidth limitations, for example the capacity of the edge links.

7.2. Congestion Control Interoperability and Legacy Systems 
All endpoints that wish to interwork with WebRTC  implement RTCP and provide
congestion feedback via the defined RTCP reporting mechanisms.

When interworking with legacy implementations that support RTCP using the 
, congestion feedback is provided in RTCP RR packets every few seconds.

Implementations that have to interwork with such endpoints  ensure that they keep within
the  constraints to limit the congestion they can cause.

If a legacy endpoint supports RTP/AVPF, this enables negotiation of important parameters for
frequent reporting, such as the "trr-int" parameter, and the possibility that the endpoint supports
some useful feedback format for congestion control purposes such as .
Implementations that have to interwork with such endpoints  ensure that they stay within
the  constraints to limit the congestion they can cause, but they
might find that they can achieve better congestion response depending on the amount of
feedback that is available.

With proprietary congestion control algorithms, issues can arise when different algorithms and
implementations interact in a communication session. If the different implementations have
made different choices in regards to the type of adaptation, for example one sender based, and
one receiver based, then one could end up in a situation where one direction is dual controlled
when the other direction is not controlled. This memo cannot mandate behavior for proprietary
congestion control algorithms, but implementations that use such algorithms ought to be aware
of this issue and try to ensure that effective congestion control is negotiated for media flowing in
both directions. If the IETF were to standardize both sender- and receiver-based congestion
control algorithms for WebRTC traffic in the future, the issues of interoperability, control, and
ensuring that both directions of media flow are congestion controlled would also need to be
considered.

MUST
SHOULD

MUST

RTP/AVP profile
[RFC3551]

MUST
RTP circuit breaker [RFC8083]

TMMBR [RFC5104]
MUST

RTP circuit breaker [RFC8083]

8. WebRTC Use of RTP: Performance Monitoring 
As described in Section 4.1, implementations are  to generate RTCP Sender Report (SR)
and Reception Report (RR) packets relating to the RTP packet streams they send and receive.
These RTCP reports can be used for performance monitoring purposes, since they include basic
packet-loss and jitter statistics.

A large number of additional performance metrics are supported by the RTCP Extended Reports
(XR) framework; see  and . At the time of this writing, it is not clear what
extended metrics are suitable for use in WebRTC, so there is no requirement that
implementations generate RTCP XR packets. However, implementations that can use detailed

REQUIRED

[RFC3611] [RFC6792]
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performance monitoring data  generate RTCP XR packets as appropriate. The use of RTCP XR
packets  be signaled; implementations  ignore RTCP XR packets that are unexpected
or not understood.

MAY
SHOULD MUST

9. WebRTC Use of RTP: Future Extensions 
It is possible that the core set of RTP protocols and RTP extensions specified in this memo will
prove insufficient for the future needs of WebRTC. In this case, future updates to this memo have
to be made following , 

, and 
. They also  take into account any future guidelines for

extending RTP and related protocols that have been developed.

Authors of future extensions are urged to consider the wide range of environments in which RTP
is used when recommending extensions, since extensions that are applicable in some scenarios
can be problematic in others. Where possible, the WebRTC framework will adopt RTP extensions
that are of general utility, to enable easy implementation of a gateway to other applications using
RTP, rather than adopt mechanisms that are narrowly targeted at specific WebRTC use cases.

"Guidelines for Writers of RTP Payload Format Specifications" [RFC2736]
"How to Write an RTP Payload Format" [RFC8088] "Guidelines for Extending the RTP Control
Protocol (RTCP)" [RFC5968] SHOULD

RTP profile:

Transport information:

10. Signaling Considerations 
RTP is built with the assumption that an external signaling channel exists and can be used to
configure RTP sessions and their features. The basic configuration of an RTP session consists of
the following parameters:

The name of the RTP profile to be used in the session. The  and 
 profiles can interoperate on a basic level, as can their secure variants, 
 and . The secure variants of the profiles do not

directly interoperate with the nonsecure variants, due to the presence of additional header
fields for authentication in SRTP packets and cryptographic transformation of the payload.
WebRTC requires the use of the RTP/SAVPF profile, and this  be signaled. Interworking
functions might transform this into the RTP/SAVP profile for a legacy use case by indicating to
the WebRTC endpoint that the RTP/SAVPF is used and configuring a "trr-int" value of 4
seconds. 

Source and destination IP address(es) and ports for RTP and RTCP 
be signaled for each RTP session. In WebRTC, these transport addresses will be provided by 

 that signals candidates and arrives at
nominated candidate address pairs. If  is to be used
such that a single port -- i.e., transport-layer flow -- is used for RTP and RTCP flows, this 
be signaled (see Section 4.5). 

RTP/AVP [RFC3551]
RTP/AVPF [RFC4585]
RTP/SAVP [RFC3711] RTP/SAVPF [RFC5124]

MUST

MUST

Interactive Connectivity Establishment (ICE) [RFC8445]
RTP and RTCP multiplexing [RFC5761]

MUST
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RTP payload types, media formats, and format parameters:

RTP extensions:

RTCP bandwidth:

The mapping between media type
names (and hence the RTP payload formats to be used) and the RTP payload type numbers 

 be signaled. Each media type  also have a number of media type parameters that 
 also be signaled to configure the codec and RTP payload format (the "a=fmtp:" line from

SDP). Section 4.3 of this memo discusses requirements for uniqueness of payload types. 

The use of any additional RTP header extensions and RTCP packet types,
including any necessary parameters,  be signaled. This signaling ensures that a WebRTC
endpoint's behavior, especially when sending, is predictable and consistent. For robustness
and compatibility with non-WebRTC systems that might be connected to a WebRTC session via
a gateway, implementations are  to ignore unknown RTCP packets and RTP header
extensions (see also Section 4.1). 

Support for exchanging RTCP bandwidth values with the endpoints will be
necessary. This  be done as described in 

 if using SDP, or something
semantically equivalent. This also ensures that the endpoints have a common view of the
RTCP bandwidth. A common view of the RTCP bandwidth among different endpoints is
important to prevent differences in RTCP packet timing and timeout intervals causing
interoperability problems. 

These parameters are often expressed in SDP messages conveyed within an offer/answer
exchange. RTP does not depend on SDP or the offer/answer model but does require all the
necessary parameters to be agreed upon and provided to the RTP implementation. Note that in
WebRTC, it will depend on the signaling model and API how these parameters need to be
configured, but they will need to either be set in the API or explicitly signaled between the peers.

MUST MAY
MUST

MUST

REQUIRED

SHALL "Session Description Protocol (SDP) Bandwidth
Modifiers for RTP Control Protocol (RTCP) Bandwidth" [RFC3556]

11. WebRTC API Considerations 
The  and the 
define and use the concept of a MediaStream that consists of zero or more MediaStreamTracks. A
MediaStreamTrack is an individual stream of media from any type of media source, such as a
microphone or a camera, but conceptual sources, like an audio mix or a video composition, are
also possible. The MediaStreamTracks within a MediaStream might need to be synchronized
during playback.

A MediaStreamTrack's realization in RTP, in the context of an RTCPeerConnection, consists of a
source packet stream, identified by an SSRC, sent within an RTP session that is part of the
RTCPeerConnection. The MediaStreamTrack can also result in additional packet streams, and
thus SSRCs, in the same RTP session. These can be dependent packet streams from scalable
encoding of the source stream associated with the MediaStreamTrack, if such a media encoder is
used. They can also be redundancy packet streams; these are created when applying 

 or  to the source packet stream.

It is important to note that the same media source can be feeding multiple MediaStreamTracks.
As different sets of constraints or other parameters can be applied to the MediaStreamTrack,
each MediaStreamTrack instance added to an RTCPeerConnection  result in an

WebRTC API [W3C.WebRTC] Media Capture and Streams API [W3C-MEDIA-CAPTURE]

Forward
Error Correction (Section 6.2) RTP retransmission (Section 6.1)

SHALL
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independent source packet stream with its own set of associated packet streams and thus
different SSRC(s). It will depend on applied constraints and parameters if the source stream and
the encoding configuration will be identical between different MediaStreamTracks sharing the
same media source. If the encoding parameters and constraints are the same, an implementation
could choose to use only one encoded stream to create the different RTP packet streams. Note
that such optimizations would need to take into account that the constraints for one of the
MediaStreamTracks can change at any moment, meaning that the encoding configurations might
no longer be identical, and two different encoder instances would then be needed.

The same MediaStreamTrack can also be included in multiple MediaStreams, thus multiple sets
of MediaStreams can implicitly need to use the same synchronization base. To ensure that this
works in all cases and does not force an endpoint to disrupt the media by changing
synchronization base and CNAME during delivery of any ongoing packet streams, all
MediaStreamTracks and their associated SSRCs originating from the same endpoint need to be
sent using the same CNAME within one RTCPeerConnection. This is motivating the use of a single
CNAME in Section 4.9.

The requirement to use the same CNAME for all SSRCs that originate from the same
endpoint does not require a middlebox that forwards traffic from multiple
endpoints to only use a single CNAME.

Different CNAMEs normally need to be used for different RTCPeerConnection instances, as
specified in Section 4.9. Having two communication sessions with the same CNAME could enable
tracking of a user or device across different services (see  for details). A
web application can request that the CNAMEs used in different RTCPeerConnections (within a
same-origin context) be the same; this allows for synchronization of the endpoint's RTP packet
streams across the different RTCPeerConnections.

Note: This doesn't result in a tracking issue, since the creation of matching CNAMEs
depends on existing tracking within a single origin.

The above will currently force a WebRTC endpoint that receives a MediaStreamTrack on one
RTCPeerConnection and adds it as outgoing one on any RTCPeerConnection to perform
resynchronization of the stream. Since the sending party needs to change the CNAME to the one
it uses, this implies it has to use a local system clock as the timebase for the synchronization.
Thus, the relative relation between the timebase of the incoming stream and the system sending
out needs to be defined. This relation also needs monitoring for clock drift and likely adjustments
of the synchronization. The sending entity is also responsible for congestion control for its sent
streams. In cases of packet loss, the loss of incoming data also needs to be handled. This leads to
the observation that the method that is least likely to cause issues or interruptions in the
outgoing source packet stream is a model of full decoding, including repair, followed by encoding
of the media again into the outgoing packet stream. Optimizations of this method are clearly
possible and implementation specific.

Section 4.4.1 of [RFC8826]
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A WebRTC endpoint  support receiving multiple MediaStreamTracks, where each of the
different MediaStreamTracks (and its sets of associated packet streams) uses different CNAMEs.
However, MediaStreamTracks that are received with different CNAMEs have no defined
synchronization.

Note: The motivation for supporting reception of multiple CNAMEs is to allow for
forward compatibility with any future changes that enable more efficient stream
handling when endpoints relay/forward streams. It also ensures that endpoints can
interoperate with certain types of multistream middleboxes or endpoints that are
not WebRTC.

 specifies that the binding between
the WebRTC MediaStreams, MediaStreamTracks, and the SSRC is done as specified in 

. Section 4.1 of 
 also defines how to map source packet

streams with unknown SSRCs to MediaStreamTracks and MediaStreams. This later is relevant to
handle some cases of legacy interoperability. Commonly, the RTP payload type of any incoming
packets will reveal if the packet stream is a source stream or a redundancy or dependent packet
stream. The association to the correct source packet stream depends on the payload format in
use for the packet stream.

Finally, this specification puts a requirement on the WebRTC API to realize a method for
determining the  as well as the 
(when supported); the basic requirements for this is further discussed in Section 12.2.1.

MUST

"JavaScript Session Establishment Protocol (JSEP)" [RFC8829]
"WebRTC

MediaStream Identification in the Session Description Protocol" [RFC8830] the
MediaStream Identification (MSID) document [RFC8830]

CSRC list (Section 4.1) mixer-to-client audio levels (Section 5.2.3)

12. RTP Implementation Considerations 
The following discussion provides some guidance on the implementation of the RTP features
described in this memo. The focus is on a WebRTC endpoint implementation perspective, and
while some mention is made of the behavior of middleboxes, that is not the focus of this memo.

12.1. Configuration and Use of RTP Sessions 
A WebRTC endpoint will be a simultaneous participant in one or more RTP sessions. Each RTP
session can convey multiple media sources and include media data from multiple endpoints. In
the following, some ways in which WebRTC endpoints can configure and use RTP sessions are
outlined.

12.1.1. Use of Multiple Media Sources within an RTP Session 

RTP is a group communication protocol, and every RTP session can potentially contain multiple
RTP packet streams. There are several reasons why this might be desirable:

Multiple media types:• 
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Outside of WebRTC, it is common to use one RTP session for each type of media source (e.g.,
one RTP session for audio sources and one for video sources, each sent over different
transport-layer flows). However, to reduce the number of UDP ports used, the default in
WebRTC is to send all types of media in a single RTP session, as described in Section 4.4,
using RTP and RTCP multiplexing (Section 4.5) to further reduce the number of UDP ports
needed. This RTP session then uses only one bidirectional transport-layer flow but will
contain multiple RTP packet streams, each containing a different type of media. A common
example might be an endpoint with a camera and microphone that sends two RTP packet
streams, one video and one audio, into a single RTP session.

Multiple capture devices:

A WebRTC endpoint might have multiple cameras, microphones, or other media capture
devices, and so it might want to generate several RTP packet streams of the same media type.
Alternatively, it might want to send media from a single capture device in several different
formats or quality settings at once. Both can result in a single endpoint sending multiple RTP
packet streams of the same media type into a single RTP session at the same time.

Associated repair data:

An endpoint might send an RTP packet stream that is somehow associated with another
stream. For example, it might send an RTP packet stream that contains FEC or retransmission
data relating to another stream. Some RTP payload formats send this sort of associated
repair data as part of the source packet stream, while others send it as a separate packet
stream.

Layered or multiple-description coding:

Within a single RTP session, an endpoint can use a layered media codec -- for example, H.264
SVC -- or a multiple-description codec that generates multiple RTP packet streams, each with
a distinct RTP SSRC.

RTP mixers, translators, and other middleboxes:

An RTP session, in the WebRTC context, is a point-to-point association between an endpoint
and some other peer device, where those devices share a common SSRC space. The peer
device might be another WebRTC endpoint, or it might be an RTP mixer, translator, or some
other form of media-processing middlebox. In the latter cases, the middlebox might send
mixed or relayed RTP streams from several participants, which the WebRTC endpoint will
need to render. Thus, even though a WebRTC endpoint might only be a member of a single
RTP session, the peer device might be extending that RTP session to incorporate other
endpoints. WebRTC is a group communication environment, and endpoints need to be
capable of receiving, decoding, and playing out multiple RTP packet streams at once, even in
a single RTP session.

• 

• 

• 

• 

RFC 8834 RTP for WebRTC October 2020

Perkins, et al. Standards Track Page 24



12.1.2. Use of Multiple RTP Sessions 

In addition to sending and receiving multiple RTP packet streams within a single RTP session, a
WebRTC endpoint might participate in multiple RTP sessions. There are several reasons why a
WebRTC endpoint might choose to do this:

To interoperate with legacy devices:

The common practice in the non-WebRTC world is to send different types of media in
separate RTP sessions -- for example, using one RTP session for audio and another RTP
session, on a separate transport-layer flow, for video. All WebRTC endpoints need to support
the option of sending different types of media on different RTP sessions so they can
interwork with such legacy devices. This is discussed further in Section 4.4.

To provide enhanced quality of service:

Some network-based quality-of-service mechanisms operate on the granularity of transport-
layer flows. If use of these mechanisms to provide differentiated quality of service for some
RTP packet streams is desired, then those RTP packet streams need to be sent in a separate
RTP session using a different transport-layer flow, and with appropriate quality-of-service
marking. This is discussed further in Section 12.1.3.

To separate media with different purposes:

An endpoint might want to send RTP packet streams that have different purposes on
different RTP sessions, to make it easy for the peer device to distinguish them. For example,
some centralized multiparty conferencing systems display the active speaker in high
resolution but show low-resolution "thumbnails" of other participants. Such systems might
configure the endpoints to send simulcast high- and low-resolution versions of their video
using separate RTP sessions to simplify the operation of the RTP middlebox. In the WebRTC
context, this is currently possible by establishing multiple WebRTC MediaStreamTracks that
have the same media source in one (or more) RTCPeerConnection. Each MediaStreamTrack
is then configured to deliver a particular media quality and thus media bitrate, and it will
produce an independently encoded version with the codec parameters agreed specifically in
the context of that RTCPeerConnection. The RTP middlebox can distinguish packets
corresponding to the low- and high-resolution streams by inspecting their SSRC, RTP payload
type, or some other information contained in RTP payload, RTP header extension, or RTCP
packets. However, it can be easier to distinguish the RTP packet streams if they arrive on
separate RTP sessions on separate transport-layer flows.

To directly connect with multiple peers:

A multiparty conference does not need to use an RTP middlebox. Rather, a multi-unicast
mesh can be created, comprising several distinct RTP sessions, with each participant sending
RTP traffic over a separate RTP session (that is, using an independent RTCPeerConnection
object) to every other participant, as shown in Figure 1. This topology has the benefit of not
requiring an RTP middlebox node that is trusted to access and manipulate the media data.

• 

• 

• 

• 
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The downside is that it increases the used bandwidth at each sender by requiring one copy
of the RTP packet streams for each participant that is part of the same session beyond the
sender itself.

The multi-unicast topology could also be implemented as a single RTP session, spanning
multiple peer-to-peer transport-layer connections, or as several pairwise RTP sessions, one
between each pair of peers. To maintain a coherent mapping of the relationship between
RTP sessions and RTCPeerConnection objects, it is RECOMMENDED that this be implemented
as several individual RTP sessions. The only downside is that endpoint A will not learn of the
quality of any transmission happening between B and C, since it will not see RTCP reports for
the RTP session between B and C, whereas it would if all three participants were part of a
single RTP session. Experience with the Mbone tools (experimental RTP-based multicast
conferencing tools from the late 1990s) has shown that RTCP reception quality reports for
third parties can be presented to users in a way that helps them understand asymmetric
network problems, and the approach of using separate RTP sessions prevents this. However,
an advantage of using separate RTP sessions is that it enables using different media bitrates
and RTP session configurations between the different peers, thus not forcing B to endure the
same quality reductions as C will if there are limitations in the transport from A to C. It is
believed that these advantages outweigh the limitations in debugging power.

To indirectly connect with multiple peers:

A common scenario in multiparty conferencing is to create indirect connections to multiple
peers, using an RTP mixer, translator, or some other type of RTP middlebox. Figure 2 outlines
a simple topology that might be used in a four-person centralized conference. The middlebox
acts to optimize the transmission of RTP packet streams from certain perspectives, either by
only sending some of the received RTP packet stream to any given receiver, or by providing a
combined RTP packet stream out of a set of contributing streams.

Figure 1: Multi-unicast Using Several RTP Sessions 

+---+     +---+
| A |<--->| B |
+---+     +---+
  ^         ^
   \       /
    \     /
     v   v
     +---+
     | C |
     +---+

• 
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There are various methods of implementation for the middlebox. If implemented as a
standard RTP mixer or translator, a single RTP session will extend across the middlebox and
encompass all the endpoints in one multiparty session. Other types of middleboxes might use
separate RTP sessions between each endpoint and the middlebox. A common aspect is that
these RTP middleboxes can use a number of tools to control the media encoding provided by
a WebRTC endpoint. This includes functions like requesting the breaking of the encoding
chain and having the encoder produce a so-called Intra frame. Another common aspect is
limiting the bitrate of a stream to better match the mixed output. Other aspects are
controlling the most suitable frame rate, picture resolution, and the trade-off between frame
rate and spatial quality. The middlebox has the responsibility to correctly perform
congestion control, identify sources, and manage synchronization while providing the
application with suitable media optimizations. The middlebox also has to be a trusted node
when it comes to security, since it manipulates either the RTP header or the media itself (or
both) received from one endpoint before sending them on towards the endpoint(s); thus they
need to be able to decrypt and then re-encrypt the RTP packet stream before sending it out.

Mixers are expected to not forward RTCP reports regarding RTP packet streams across
themselves. This is due to the difference between the RTP packet streams provided to the
different endpoints. The original media source lacks information about a mixer's
manipulations prior to being sent to the different receivers. This scenario also results in an
endpoint's feedback or requests going to the mixer. When the mixer can't act on this by itself,
it is forced to go to the original media source to fulfill the receiver's request. This will not
necessarily be explicitly visible to any RTP and RTCP traffic, but the interactions and the time
to complete them will indicate such dependencies.

Providing source authentication in multiparty scenarios is a challenge. In the mixer-based
topologies, endpoints source authentication is based on, firstly, verifying that media comes
from the mixer by cryptographic verification and, secondly, trust in the mixer to correctly
identify any source towards the endpoint. In RTP sessions where multiple endpoints are
directly visible to an endpoint, all endpoints will have knowledge about each others' master
keys and can thus inject packets claiming to come from another endpoint in the session. Any
node performing relay can perform noncryptographic mitigation by preventing forwarding
of packets that have SSRC fields that came from other endpoints before. For cryptographic

Figure 2: RTP Mixer with Only Unicast Paths 

+---+      +-------------+      +---+
| A |<---->|             |<---->| B |
+---+      | RTP mixer,  |      +---+
           | translator, |
           | or other    |
+---+      | middlebox   |      +---+
| C |<---->|             |<---->| D |
+---+      +-------------+      +---+
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verification of the source, SRTP would require additional security mechanisms -- for
example,  --
that are not part of the base WebRTC standards.

To forward media between multiple peers:

It is sometimes desirable for an endpoint that receives an RTP packet stream to be able to
forward that RTP packet stream to a third party. The are some obvious security and privacy
implications in supporting this, but also potential uses. This is supported in the W3C API by
taking the received and decoded media and using it as a media source that is re-encoded and
transmitted as a new stream.

At the RTP layer, media forwarding acts as a back-to-back RTP receiver and RTP sender. The
receiving side terminates the RTP session and decodes the media, while the sender side re-
encodes and transmits the media using an entirely separate RTP session. The original sender
will only see a single receiver of the media, and will not be able to tell that forwarding is
happening based on RTP-layer information, since the RTP session that is used to send the
forwarded media is not connected to the RTP session on which the media was received by
the node doing the forwarding.

The endpoint that is performing the forwarding is responsible for producing an RTP packet
stream suitable for onwards transmission. The outgoing RTP session that is used to send the
forwarded media is entirely separate from the RTP session on which the media was received.
This will require media transcoding for congestion control purposes to produce a suitable
bitrate for the outgoing RTP session, reducing media quality and forcing the forwarding
endpoint to spend the resource on the transcoding. The media transcoding does result in a
separation of the two different legs, removing almost all dependencies, and allowing the
forwarding endpoint to optimize its media transcoding operation. The cost is greatly
increased computational complexity on the forwarding node. Receivers of the forwarded
stream will see the forwarding device as the sender of the stream and will not be able to tell
from the RTP layer that they are receiving a forwarded stream rather than an entirely new
RTP packet stream generated by the forwarding device.

Timed Efficient Stream Loss-Tolerant Authentication (TESLA) for SRTP [RFC4383]

• 

12.1.3. Differentiated Treatment of RTP Streams 

There are use cases for differentiated treatment of RTP packet streams. Such differentiation can
happen at several places in the system. First of all is the prioritization within the endpoint
sending the media, which controls both which RTP packet streams will be sent and their
allocation of bitrate out of the current available aggregate, as determined by the congestion
control.

It is expected that the  will allow the application to indicate relative
priorities for different MediaStreamTracks. These priorities can then be used to influence the
local RTP processing, especially when it comes to determining how to divide the available
bandwidth between the RTP packet streams for the sake of congestion control. Any changes in
relative priority will also need to be considered for RTP packet streams that are associated with
the main RTP packet streams, such as redundant streams for RTP retransmission and FEC. The
importance of such redundant RTP packet streams is dependent on the media type and codec

WebRTC API [W3C.WebRTC]
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DiffServ:

Flow based:

Deep packet inspection:

used, with regard to how robust that codec is against packet loss. However, a default policy might
be to use the same priority for a redundant RTP packet stream as for the source RTP packet
stream.

Secondly, the network can prioritize transport-layer flows and subflows, including RTP packet
streams. Typically, differential treatment includes two steps, the first being identifying whether
an IP packet belongs to a class that has to be treated differently, the second consisting of the
actual mechanism for prioritizing packets. Three common methods for classifying IP packets are:

The endpoint marks a packet with a DiffServ code point to indicate to the network that
the packet belongs to a particular class. 

Packets that need to be given a particular treatment are identified using a
combination of IP and port address. 

A network classifier (DPI) inspects the packet and tries to determine if
the packet represents a particular application and type that is to be prioritized. 

Flow-based differentiation will provide the same treatment to all packets within a transport-
layer flow, i.e., relative prioritization is not possible. Moreover, if the resources are limited, it
might not be possible to provide differential treatment compared to best effort for all the RTP
packet streams used in a WebRTC session. The use of flow-based differentiation needs to be
coordinated between the WebRTC system and the network(s). The WebRTC endpoint needs to
know that flow-based differentiation might be used to provide the separation of the RTP packet
streams onto different UDP flows to enable a more granular usage of flow-based differentiation.
The used flows, their 5-tuples, and prioritization will need to be communicated to the network so
that it can identify the flows correctly to enable prioritization. No specific protocol support for
this is specified.

DiffServ assumes that either the endpoint or a classifier can mark the packets with an
appropriate Differentiated Services Code Point (DSCP) so that the packets are treated according
to that marking. If the endpoint is to mark the traffic, two requirements arise in the WebRTC
context: 1) The WebRTC endpoint has to know which DSCPs to use and know that it can use them
on some set of RTP packet streams. 2) The information needs to be propagated to the operating
system when transmitting the packet. Details of this process are outside the scope of this memo
and are further discussed in 

.

Despite the SRTP media encryption, deep packet inspectors will still be fairly capable of
classifying the RTP streams. The reason is that SRTP leaves the first 12 bytes of the RTP header
unencrypted. This enables easy RTP stream identification using the SSRC and provides the
classifier with useful information that can be correlated to determine, for example, the stream's
media type. Using packet sizes, reception times, packet inter-spacing, RTP timestamp increments,
and sequence numbers, fairly reliable classifications are achieved.

"Differentiated Services Code Point (DSCP) Packet Markings for
WebRTC QoS" [RFC8837]
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12.2. Media Source, RTP Streams, and Participant Identification 

For packet-based marking schemes, it might be possible to mark individual RTP packets
differently based on the relative priority of the RTP payload. For example, video codecs that have
I, P, and B pictures could prioritize any payloads carrying only B frames less, as these are less
damaging to lose. However, depending on the QoS mechanism and what markings are applied,
this can result in not only different packet-drop probabilities but also packet reordering; see 

 and  for further discussion. As a default policy, all RTP packets related to an
RTP packet stream ought to be provided with the same prioritization; per-packet prioritization is
outside the scope of this memo but might be specified elsewhere in future.

It is also important to consider how RTCP packets associated with a particular RTP packet stream
need to be marked. RTCP compound packets with Sender Reports (SRs) ought to be marked with
the same priority as the RTP packet stream itself, so the RTCP-based round-trip time (RTT)
measurements are done using the same transport-layer flow priority as the RTP packet stream
experiences. RTCP compound packets containing an RR packet ought to be sent with the priority
used by the majority of the RTP packet streams reported on. RTCP packets containing time-
critical feedback packets can use higher priority to improve the timeliness and likelihood of
delivery of such feedback.

[RFC8837] [RFC7657]

12.2.1. Media Source Identification 

Each RTP packet stream is identified by a unique synchronization source (SSRC) identifier. The
SSRC identifier is carried in each of the RTP packets comprising an RTP packet stream, and is also
used to identify that stream in the corresponding RTCP reports. The SSRC is chosen as discussed
in Section 4.8. The first stage in demultiplexing RTP and RTCP packets received on a single
transport-layer flow at a WebRTC endpoint is to separate the RTP packet streams based on their
SSRC value; once that is done, additional demultiplexing steps can determine how and where to
render the media.

RTP allows a mixer, or other RTP-layer middlebox, to combine encoded streams from multiple
media sources to form a new encoded stream from a new media source (the mixer). The RTP
packets in that new RTP packet stream can include a contributing source (CSRC) list, indicating
which original SSRCs contributed to the combined source stream. As described in Section 4.1,
implementations need to support reception of RTP data packets containing a CSRC list and RTCP
packets that relate to sources present in the CSRC list. The CSRC list can change on a packet-by-
packet basis, depending on the mixing operation being performed. Knowledge of what media
sources contributed to a particular RTP packet can be important if the user interface indicates
which participants are active in the session. Changes in the CSRC list included in packets need to
be exposed to the WebRTC application using some API if the application is to be able to track
changes in session participation. It is desirable to map CSRC values back into WebRTC
MediaStream identities as they cross this API, to avoid exposing the SSRC/CSRC namespace to
WebRTC applications.
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12.2.2. SSRC Collision Detection 

The RTP standard requires RTP implementations to have support for detecting and handling
SSRC collisions -- i.e., be able to resolve the conflict when two different endpoints use the same
SSRC value (see ). This requirement also applies to WebRTC endpoints.
There are several scenarios where SSRC collisions can occur:

In a point-to-point session where each SSRC is associated with either of the two endpoints
and the main media-carrying SSRC identifier will be announced in the signaling channel, a
collision is less likely to occur due to the information about used SSRCs. If SDP is used, this
information is provided by . Still, collisions can
occur if both endpoints start using a new SSRC identifier prior to having signaled it to the
peer and received acknowledgement on the signaling message. 

 contains a mechanism to
signal how the endpoint resolved the SSRC collision. 
SSRC values that have not been signaled could also appear in an RTP session. This is more
likely than it appears, since some RTP functions use extra SSRCs to provide their
functionality. For example, retransmission data might be transmitted using a separate RTP
packet stream that requires its own SSRC, separate from the SSRC of the source RTP packet
stream . In those cases, an endpoint can create a new SSRC that strictly doesn't
need to be announced over the signaling channel to function correctly on both RTP and
RTCPeerConnection level. 
Multiple endpoints in a multiparty conference can create new sources and signal those
towards the RTP middlebox. In cases where the SSRC/CSRC are propagated between the
different endpoints from the RTP middlebox, collisions can occur. 
An RTP middlebox could connect an endpoint's RTCPeerConnection to another
RTCPeerConnection from the same endpoint, thus forming a loop where the endpoint will
receive its own traffic. While it is clearly considered a bug, it is important that the endpoint
be able to recognize and handle the case when it occurs. This case becomes even more
problematic when media mixers and such are involved, where the stream received is a
different stream but still contains this client's input. 

These SSRC/CSRC collisions can only be handled on the RTP level when the same RTP session is
extended across multiple RTCPeerConnections by an RTP middlebox. To resolve the more generic
case where multiple RTCPeerConnections are interconnected, identification of the media source
or sources that are part of a MediaStreamTrack being propagated across multiple interconnected
RTCPeerConnection needs to be preserved across these interconnections.

If the mixer-to-client audio level extension  is being used in the session (see Section
5.2.3), the information in the CSRC list is augmented by audio-level information for each
contributing source. It is desirable to expose this information to the WebRTC application using
some API, after mapping the CSRC values to WebRTC MediaStream identities, so it can be exposed
in the user interface.

[RFC6465]

Section 8.2 of [RFC3550]

• 

source-specific SDP attributes [RFC5576]

"Source-Specific Media
Attributes in the Session Description Protocol (SDP)" [RFC5576]

• 

[RFC4588]

• 

• 
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12.2.3. Media Synchronization Context 

When an endpoint sends media from more than one media source, it needs to consider if (and
which of) these media sources are to be synchronized. In RTP/RTCP, synchronization is provided
by having a set of RTP packet streams be indicated as coming from the same synchronization
context and logical endpoint by using the same RTCP CNAME identifier.

The next provision is that the internal clocks of all media sources -- i.e., what drives the RTP
timestamp -- can be correlated to a system clock that is provided in RTCP Sender Reports encoded
in an NTP format. By correlating all RTP timestamps to a common system clock for all sources,
the timing relation of the different RTP packet streams, also across multiple RTP sessions, can be
derived at the receiver and, if desired, the streams can be synchronized. The requirement is for
the media sender to provide the correlation information; whether or not the information is used
is up to the receiver.

13. Security Considerations 
The overall security architecture for WebRTC is described in , and security
considerations for the WebRTC framework are described in . These considerations also
apply to this memo.

The security considerations of the RTP specification, the RTP/SAVPF profile, and the various RTP/
RTCP extensions and RTP payload formats that form the complete protocol suite described in this
memo apply. It is believed that there are no new security considerations resulting from the
combination of these various protocol extensions.

 provides handling of fundamental issues by offering confidentiality,
integrity, and partial source authentication. A media-security solution that is mandatory to
implement and use is created by combining this secured RTP profile and 

, as defined by .

RTCP packets convey a Canonical Name (CNAME) identifier that is used to associate RTP packet
streams that need to be synchronized across related RTP sessions. Inappropriate choice of
CNAME values can be a privacy concern, since long-term persistent CNAME identifiers can be
used to track users across multiple WebRTC calls. Section 4.9 of this memo mandates generation
of short-term persistent RTCP CNAMES, as specified in RFC 7022, resulting in untraceable CNAME
values that alleviate this risk.

Some potential denial-of-service attacks exist if the RTCP reporting interval is configured to an
inappropriate value. This could be done by configuring the RTCP bandwidth fraction to an
excessively large or small value using the SDP "b=RR:" or "b=RS:" lines  or some similar

[RFC8827]
[RFC8826]

"Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/SAVPF)" [RFC5124]

DTLS-SRTP keying
[RFC5764] Section 5.5 of [RFC8827]

[RFC3556]
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mechanism, or by choosing an excessively large or small value for the RTP/AVPF minimal
receiver report interval (if using SDP, this is the "a=rtcp-fb:... trr-int" parameter) . The
risks are as follows:

the RTCP bandwidth could be configured to make the regular reporting interval so large that
effective congestion control cannot be maintained, potentially leading to denial of service
due to congestion caused by the media traffic; 
the RTCP interval could be configured to a very small value, causing endpoints to generate
high-rate RTCP traffic, potentially leading to denial of service due to the RTCP traffic not
being congestion controlled; and 
RTCP parameters could be configured differently for each endpoint, with some of the
endpoints using a large reporting interval and some using a smaller interval, leading to
denial of service due to premature participant timeouts due to mismatched timeout periods
that are based on the reporting interval. This is a particular concern if endpoints use a small
but nonzero value for the RTP/AVPF minimal receiver report interval (trr-int) , as
discussed in . 

Premature participant timeout can be avoided by using the fixed (nonreduced) minimum
interval when calculating the participant timeout (see Section 4.1 of this memo and 

). To address the other concerns, endpoints  ignore parameters that
configure the RTCP reporting interval to be significantly longer than the default five-second
interval specified in  (unless the media data rate is so low that the longer reporting
interval roughly corresponds to 5% of the media data rate), or that configure the RTCP reporting
interval small enough that the RTCP bandwidth would exceed the media bandwidth.

The guidelines in  apply when using variable bitrate (VBR) audio codecs such as Opus
(see Section 4.3 for discussion of mandated audio codecs). The guidelines in  also apply,
but are of lesser importance, when using the client-to-mixer audio level header extensions
(Section 5.2.2) or the mixer-to-client audio level header extensions (Section 5.2.3). The use of the
encryption of the header extensions are , unless there are known reasons, like
RTP middleboxes performing voice-activity-based source selection or third-party monitoring that
will greatly benefit from the information, and this has been expressed using API or signaling. If
further evidence is produced to show that information leakage is significant from audio-level
indications, then use of encryption needs to be mandated at that time.

In multiparty communication scenarios using RTP middleboxes, a lot of trust is placed on these
middleboxes to preserve the session's security. The middlebox needs to maintain confidentiality
and integrity and perform source authentication. As discussed in Section 12.1.1, the middlebox
can perform checks that prevent any endpoint participating in a conference from impersonating
another. Some additional security considerations regarding multiparty topologies can be found
in .

[RFC4585]

1. 

2. 

3. 

[RFC4585]
Section 6.1 of [RFC8108]

Section 7.1.2
of [RFC8108] SHOULD

[RFC3550]

[RFC6562]
[RFC6562]

RECOMMENDED

[RFC7667]

14. IANA Considerations 
This document has no IANA actions.
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