
RFC 8731
Secure Shell (SSH) Key Exchange Method Using
Curve25519 and Curve448

Abstract
This document describes the specification for using Curve25519 and Curve448 key exchange
methods in the Secure Shell (SSH) protocol.

Stream: Internet Engineering Task Force (IETF)
RFC: 8731
Category: Standards Track
Published: February 2020
ISSN: 2070-1721
Authors: A. Adamantiadis

libssh
S. Josefsson
SJD AB

M. Baushke
Juniper Networks, Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8731

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Adamantiadis, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8731
https://www.rfc-editor.org/info/rfc8731
https://trustee.ietf.org/license-info

1. Introduction
Secure Shell (SSH) is a secure remote login protocol. The key exchange protocol
described in supports an extensible set of methods. defines how elliptic
curves are integrated into this extensible SSH framework, and this document reuses the Elliptic
Curve Diffie-Hellman (ECDH) key exchange protocol messages defined in Section

 of . Other parts of , such as Elliptic Curve Menezes-Qu-
Vanstone (ECMQV) key agreement and Elliptic Curve Digital Signature Algorithm (ECDSA), are
not considered in this document.

This document describes how to implement key exchange based on Curve25519 and Curve448
 in SSH. For Curve25519 with SHA-256 , the algorithm described is

equivalent to the privately defined algorithm "curve25519-sha256@libssh.org", which at the time
of publication was implemented and widely deployed in libssh and OpenSSH .
The Curve448 key exchange method is similar but uses SHA-512 .

2. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Table of Contents
1. Introduction

2. Requirements Language

3. Key Exchange Methods

3.1. Shared Secret Encoding

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Acknowledgements

Authors' Addresses

[RFC4251]
[RFC4253] [RFC5656]

7.1 (ECDH
Message Numbers) [RFC5656] [RFC5656]

[RFC7748] [RFC6234][SHS]

[libssh] [OpenSSH]
[RFC6234][SHS]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8731 Curve25519/448 for SSH February 2020

Adamantiadis, et al. Standards Track Page 2

https://www.rfc-editor.org/rfc/rfc5656#section-7.1
https://www.rfc-editor.org/rfc/rfc5656#section-7.1
https://www.rfc-editor.org/rfc/rfc5656#section-7.1

3. Key Exchange Methods
The key exchange procedure is similar to the ECDH method described in ,
though with a different wire encoding used for public values and the final shared secret. Public
ephemeral keys are encoded for transmission as standard SSH strings.

The protocol flow, the SSH_MSG_KEX_ECDH_INIT and SSH_MSG_KEX_ECDH_REPLY messages,
and the structure of the exchange hash are identical to .

The method names registered by this document are "curve25519-sha256" and "curve448-sha512".

The methods are based on Curve25519 and Curve448 scalar multiplication, as described in
. Private and public keys are generated as described therein. Public keys are defined as

strings of 32 bytes for Curve25519 and 56 bytes for Curve448.

The key-agreement schemes "curve25519-sha256" and "curve448-sha512" perform the Diffie-
Hellman protocol using the functions X25519 and X448, respectively. Implementations
compute these functions using the algorithms described in . When they do so,
implementations check whether the computed Diffie-Hellman shared secret is the all-zero
value and abort if so, as described in . Alternative implementations of
these functions abort when either the client or the server input forces the shared secret
to one of a small set of values, as described in Sections 6 and 7 of . Clients and servers

 also abort if the length of the received public keys are not the expected lengths. An abort
for these purposes is defined as a disconnect (SSH_MSG_DISCONNECT) of the session and

 use the SSH_DISCONNECT_KEY_EXCHANGE_FAILED reason for the message
. No further validation is required beyond what is described in . The derived

shared secret is 32 bytes when "curve25519-sha256" is used and 56 bytes when "curve448-
sha512" is used. The encodings of all values are defined in . The hash used is SHA-256
for "curve25519-sha256" and SHA-512 for "curve448-sha512".

3.1. Shared Secret Encoding
The following step differs from , which uses a different conversion. This is not intended
to modify that text generally, but only to be applicable to the scope of the mechanism described
in this document.

The shared secret, K, is defined in and as an integer encoded as a multiple
precision integer (mpint). Curve25519/448 outputs a binary string X, which is the 32- or 56-byte
point obtained by scalar multiplication of the other side's public key and the local private key
scalar. The 32 or 56 bytes of X are converted into K by interpreting the octets as an unsigned
fixed-length integer encoded in network byte order.

The mpint K is then encoded using the process described in , and the
resulting bytes are fed as described in to the key exchange method's hash function to
generate encryption keys.

Section 4 of [RFC5656]

Section 4 of [RFC5656]

[RFC7748]

SHOULD
[RFC7748]

MUST
Section 6 of [RFC7748]

SHOULD
[RFC7748]

MUST

SHOULD [IANA-
REASON] [RFC7748]

[RFC7748]

[RFC5656]

[RFC4253] [RFC5656]

Section 5 of [RFC4251]
[RFC4253]

RFC 8731 Curve25519/448 for SSH February 2020

Adamantiadis, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc5656#section-4
https://www.rfc-editor.org/rfc/rfc5656#section-4
https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc7748#section-7
https://www.rfc-editor.org/rfc/rfc4251#section-5

[RFC2119]

[RFC4250]

When performing the X25519 or X448 operations, the integer values there will be encoded into
byte strings by doing a fixed-length unsigned little-endian conversion, per . It is only
later when these byte strings are then passed to the ECDH function in SSH that the bytes are
reinterpreted as a fixed-length unsigned big-endian integer value K, and then later that K value is
encoded as a variable-length signed "mpint" before being fed to the hash algorithm used for key
generation. The mpint K is then fed along with other data to the key exchange method's hash
function to generate encryption keys.

4. Security Considerations
The security considerations of , , and are inherited.

Curve25519 with SHA-256 provides strong (~128 bits) security, is efficient on a wide range of
architectures, and has characteristics that allow for better implementation properties compared
to traditional elliptic curves. Curve448 with SHA-512 provides stronger (~224 bits) security with
similar implementation properties; however, it has not received the same cryptographic review
as Curve25519. It is also slower (larger key material and larger secure hash algorithm), but it is
provided as a hedge to combat unforeseen analytical advances against Curve25519 and SHA-256
due to the larger number of security bits.

The way the derived mpint binary secret string is encoded before it is hashed (i.e., adding or
removing zero bytes for encoding) raises the potential for a side-channel attack, which could
determine the length of what is hashed. This would leak the most significant bit of the derived
secret and/or allow detection of when the most significant bytes are zero. For backwards-
compatibility reasons, it was decided not to address this potential problem.

This document provides "curve25519-sha256" as the preferred choice but suggests that the
"curve448-sha512" be implemented to provide more than 128 bits of security strength should that
become a requirement.

6. References

6.1. Normative References

, , ,
, , March 1997,
.

,
, , , January 2006,

.

[RFC7748]

[RFC4251] [RFC5656] [RFC7748]

5. IANA Considerations
IANA has added "curve25519-sha256" and "curve448-sha512" to the "Key Exchange Method
Names" registry for SSH that was created in .[IANA-KEX] Section 4.10 of [RFC4250]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Lehtinen, S. and C. Lonvick, Ed. "The Secure Shell (SSH) Protocol Assigned
Numbers" RFC 4250 DOI 10.17487/RFC4250 <https://www.rfc-
editor.org/info/rfc4250>

RFC 8731 Curve25519/448 for SSH February 2020

Adamantiadis, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc4250#section-4.10
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4250

[RFC4251]

[RFC4253]

[RFC5656]

[RFC8174]

[SHS]

[IANA-KEX]

[IANA-REASON]

[libssh]

[OpenSSH]

[RFC6234]

[RFC7748]

, ,
, , January 2006,
.

,
, , , January 2006,

.

,
, , , December 2009,

.

, ,
, , , May 2017,

.

, ,
, , August 2015,

.

6.2. Informative References

, , ,
.

,
, ,

.

, , , .

, , ,
.

,
, , , May 2011,

.

, , ,
, January 2016, .

Acknowledgements
The "curve25519-sha256" key exchange method is identical to the "curve25519-
sha256@libssh.org" key exchange method created by and implemented in
libssh and OpenSSH.

Thanks to the following people for review and comments: , ,
, , , , and .

Ylonen, T. and C. Lonvick, Ed. "The Secure Shell (SSH) Protocol Architecture"
RFC 4251 DOI 10.17487/RFC4251 <https://www.rfc-editor.org/info/
rfc4251>

Ylonen, T. and C. Lonvick, Ed. "The Secure Shell (SSH) Transport Layer
Protocol" RFC 4253 DOI 10.17487/RFC4253 <https://www.rfc-
editor.org/info/rfc4253>

Stebila, D. and J. Green "Elliptic Curve Algorithm Integration in the Secure Shell
Transport Layer" RFC 5656 DOI 10.17487/RFC5656 <https://
www.rfc-editor.org/info/rfc5656>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

National Institute of Standards and Technology "Secure Hash Standard (SHS)"
FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>

IANA "Secure Shell (SSH) Protocol Parameters: Key Exchange Method Names"
<https://www.iana.org/assignments/ssh-parameters/>

IANA "Secure Shell (SSH) Protocol Parameters: Disconnection Messages
Reason Codes and Descriptions" <https://www.iana.org/assignments/ssh-
parameters/>

libssh "The SSH Library" <https://www.libssh.org/>

OpenSSH group of OpenBSD "The OpenSSH Project" <https://
www.openssh.com/>

Eastlake 3rd, D. and T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Langley, A., Hamburg, M., and S. Turner "Elliptic Curves for Security" RFC 7748
DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Aris Adamantiadis

Denis Bider Damien Miller Niels
Moeller Matt Johnston Eric Rescorla Ron Frederick Stefan Buehler

RFC 8731 Curve25519/448 for SSH February 2020

Adamantiadis, et al. Standards Track Page 5

https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.iana.org/assignments/ssh-parameters/
https://www.iana.org/assignments/ssh-parameters/
https://www.iana.org/assignments/ssh-parameters/
https://www.libssh.org/
https://www.openssh.com/
https://www.openssh.com/
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc7748

Authors' Addresses
Aris Adamantiadis
libssh

 aris@badcode.be Email:

Simon Josefsson
SJD AB

 simon@josefsson.org Email:

Mark D. Baushke
Juniper Networks, Inc.

 mdb@juniper.net Email:

RFC 8731 Curve25519/448 for SSH February 2020

Adamantiadis, et al. Standards Track Page 6

mailto:aris@badcode.be
mailto:simon@josefsson.org
mailto:mdb@juniper.net

	RFC 8731
	Secure Shell (SSH) Key Exchange Method Using Curve25519 and Curve448
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Key Exchange Methods
	3.1. Shared Secret Encoding

	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgements
	Authors' Addresses

