
RFC 8710
Multipart Content-Format for the Constrained
Application Protocol (CoAP)

Abstract
This memo defines application/multipart-core, an application-independent media type that can
be used to combine representations of zero or more different media types (each with a
Constrained Application Protocol (CoAP) Content-Format identifier) into a single representation,
with minimal framing overhead.

Stream: Internet Engineering Task Force (IETF)
RFC: 8710
Category: Standards Track
Published: February 2020
ISSN: 2070-1721
Authors: T. Fossati

ARM
K. Hartke
Ericsson

C. Bormann
Universität Bremen TZI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8710

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Fossati, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8710
https://www.rfc-editor.org/info/rfc8710
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

2. Multipart Content-Format Encoding

3. Usage Example: Observing Resources

4. Implementation Hints

5. IANA Considerations

5.1. Registration of Media Type application/multipart-core

5.2. Registration of a Content-Format Identifier for application/multipart-core

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction
This memo defines application/multipart-core, an application-independent media type that can
be used to combine representations of zero or more different media types (each with a CoAP
Content-Format identifier) into a single representation, with minimal framing
overhead.

This simple and efficient binary framing mechanism can be employed to create application-
specific message bodies that build on multiple already existing media types.

As the name of the media type suggests, application/multipart-core was inspired by the multipart
media types initially defined in the original set of MIME specifications and later.
However, while those needed to focus on the syntactic aspects of integrating multiple
representations into one email, transfer protocols providing full data transparency such as CoAP
as well as readily available encoding formats such as the Concise Binary Object Representation
(CBOR) shift the focus towards the intended use of the combined representations. In

[RFC7252]

[RFC2046]

[RFC7049]

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 2

this respect, the basic intent of the application/multipart-core media type is like that of multipart/
mixed (); however, the semantics are relaxed to allow for both ordered
and unordered collections of media types.

Historical Note: Experience with multipart/mixed in email has shown that recipients that
care about order of included body parts will process them in the order they are listed inside
multipart/mixed, and recipients that don't care about the order will ignore it anyway. The
media type multipart/parallel that was intended for unordered collections didn't deploy.

The detailed semantics of the representations are refined by the context established by the
application in the accompanying request parameters, e.g., the resource URI and any further
options (header fields), but three usage scenarios are envisioned:

In one case, the individual representations in an application/multipart-core message body occur
in a sequence, which may be employed by an application where such a sequence is natural, e.g.,
for a number of audio snippets in various formats to be played out in that sequence or search
results returned in order of relevance.

In another case, an application may be more interested in a bag of representations (which are
distinguished by their Content-Format identifiers), such as an audio snippet and a text
representation accompanying it. In such a case, the sequence in which these occur may not be
relevant to the application. This specification adds the option of substituting a null value for the
representation of an optional part, which indicates that the part is not present.

A third common situation only has a single representation in the sequence, and the sender
selects just one of a set of formats possible for this situation. This kind of union "type" of formats
may also make the presence of the actual representation optional, the omission of which leads to
a zero-length array.

Where these rules are not sufficient, an application might still use the general format defined
here but register a new media type and an associated Content-Format identifier to associate the
representation with these more specific semantics instead of using the application/multipart-core
media type.

Also, future specifications might want to define rough equivalents for other multipart media
types with specific semantics not covered by the present specification, such as multipart/
alternative (), where several alternative representations are provided
in the message body, but only one of those is to be selected by the recipient for its use (this is less
likely to be useful in a constrained environment that has facilities for pre-flight discovery).

Section 5.1.3 of [RFC2046]

Section 5.1.4 of [RFC2046]

1.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc2046#section-5.1.3
https://www.rfc-editor.org/rfc/rfc2046#section-5.1.4

2. Multipart Content-Format Encoding
A representation of media type application/multipart-core contains a collection of zero or more
representations, each along with their respective Content-Format.

The collection is encoded as a CBOR array with an even number of elements. Counting
from zero, the odd-numbered elements are a byte string containing a representation or the value
"null" (if an optional part is indicated as not given). The (even-numbered) element preceding
each of these is an unsigned integer specifying the Content-Format ID of the representation
following it.

For example, a collection containing two representations, one with Content-Format ID 42 and one
with Content-Format ID 0, looks like this in CBOR diagnostic notation:

For illustration, the structure of an application/multipart-core representation can be described
by the Concise Data Definition Language (CDDL) specification in Figure 1:

This format is intended as a strict specification: an implementation stop processing the
representation if there is a CBOR well-formedness error, a deviation from the structure defined
above, or any residual data left after processing the CBOR data item. (This generally means the
representation is not processed at all unless some streaming processing has already happened.)

[RFC7049]

[42, h'0123456789abcdef', 0, h'3031323334']

[RFC8610]

Figure 1: CDDL for application/multipart-core

multipart-core = [* multipart-part]
multipart-part = (type: uint .size 2, part: bytes / null)

MUST

3. Usage Example: Observing Resources
This section illustrates a less obvious example for using application/multipart-core: combining it
with observing a resource to handle pending results.

When a client registers to observe a resource for which no representation is available yet, the
server may send one or more 2.05 (Content) notifications that indicate the lack of an actual
representation. Later on, when one becomes available, the server will send the first actual 2.05
(Content) or 2.03 (Valid) notification. A diagram depicting possible resulting sequences of
notifications, identified by their respective response code, is shown in Figure 2.

[RFC7641]

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 4

The specification of the Observe option requires that all notifications carry the same Content-
Format. The application/multipart-core media type can be used to provide that Content-Format,
e.g., by carrying an empty list of representations in the case marked as "Pending" in Figure 2 and
carrying a single representation specified as the target Content-Format in the case in the middle
of the figure.

Figure 2: Sequence of Notifications

 __________ __________ __________
 | | | | | |
---->| 2.05 |---->| 2.05 / |---->| 4.xx / |
 | Pending | | 2.03 | | 5.xx |
 |__________| |__________| |__________|
 ^ \ \ ^ \ ^
 __/ \ ___/ /
 _______________________/

4. Implementation Hints
This section describes the serialization for readers that may be new to CBOR. It does not contain
any new information.

An application/multipart-core representation carrying no representations is represented by an
empty CBOR array, which is serialized as a single byte with the value 0x80.

An application/multipart-core representation carrying a single representation is represented by
a two-element CBOR array, which is serialized as 0x82 followed by the two elements. The first
element is an unsigned integer for the Content-Format value, which is represented as described
in Table 1. The second element is the object as a byte string, which is represented as a length as
described in Table 2 followed by the bytes of the object.

Serialization Value

0x00..0x17 0..23

0x18 0xnn 24..255

0x19 0xnn 0xnn 256..65535

Table 1: Serialization of Content-Format

Serialization Length

0x40..0x57 0..23

0x58 0xnn 24..255

0x59 0xnn 0xnn 256..65535

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 5

For example, a single text/plain object (Content-Format 0) of value "Hello World" (11 characters)
would be serialized as follows:

In effect, the serialization for a single object is done by prefixing the object with information that
there is one object (here: 0x82), information about its Content-Format (here: 0x00), and
information regarding its length (here: 0x4b).

For more than one representation included in an application/multipart-core representation, the
head of the CBOR array is adjusted (0x84 for two representations, 0x86 for three, etc.), and the
sequences of Content-Format and embedded representations follow.

For instance, the example from Section 2 would be serialized as follows:

where (*) marks the start of the information about the first representation (Content-Format 42,
byte string length 8), and (+) marks the start of the second representation (Content-Format 0, byte
string length 5).

Serialization Length

0x5a 0xnn 0xnn 0xnn 0xnn 65536..4294967295

0x5b 0xnn .. 0xnn (8 bytes) 4294967296..

Table 2: Serialization of Object Length

0x82 0x00 0x4b H e l l o 0x20 W o r l d

0x84 (*) 0x182A 0x48 0x0123456789ABCDEF (+) 0x00 0x45 0x3031323334

5. IANA Considerations

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

5.1. Registration of Media Type application/multipart-core
IANA has registered the following media type :

application

multipart-core

N/A

N/A

binary

See the Security Considerations section of RFC 8710.

N/A

RFC 8710

[RFC6838]

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 6

[RFC2119]

7. References

7.1. Normative References

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration? (standards tree only):

Applications that need to combine representations of
zero or more different media types into one, e.g., EST over secure CoAP (EST-CoAP)

The syntax and semantics of fragment identifiers specified
for application/multipart-core are as specified for application/cbor. (At publication of this
document, there is no fragment identification syntax defined for application/cbor.)

Deprecated alias names for this type: N/A
Magic number(s): N/A
File extension(s): N/A
Macintosh file type code(s):N/A

iesg@ietf.org

COMMON

N/A

CoRE WG

IESG

no

[EST-
COAPS]

•
•
•
•

5.2. Registration of a Content-Format Identifier for application/multipart-
core
IANA has registered the following Content-Format in the "CoAP Content-Formats" subregistry
within the "Constrained RESTful Environments (CoRE) Parameters" registry:

Media Type Encoding ID Reference

application/multipart-core - 62 RFC 8710

Table 3: Addition to "CoAP Content-Formats" Registry

6. Security Considerations
The security considerations of apply. In particular, resource exhaustion attacks may
employ large values for the byte string size fields or employ deeply nested structures of
recursively embedded application/multipart-core representations.

[RFC7049]

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 7

[RFC7049]

[RFC7252]

[RFC8174]

[EST-COAPS]

[RFC2046]

[RFC6838]

[RFC7641]

[RFC8610]

, , ,
, , March 1997,
.

, ,
, , October 2013,
.

,
, , , June 2014,

.

, ,
, , , May 2017,

.

7.2. Informative References

,
, , , 6

January 2020, .

,
, , , November 1996,

.

,
, , , , January 2013,

.

,
, , , September 2015,

.

,

, ,
, June 2019, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Bormann, C. and P. Hoffman "Concise Binary Object Representation (CBOR)"
RFC 7049 DOI 10.17487/RFC7049 <https://www.rfc-editor.org/info/
rfc7049>

Shelby, Z., Hartke, K., and C. Bormann "The Constrained Application Protocol
(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-
editor.org/info/rfc7252>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Stok, P., Kampanakis, P., Richardson, M., and S. Raza "EST over secure CoAP
(EST-coaps)" Work in Progress Internet-Draft, draft-ietf-ace-coap-est-18

<https://tools.ietf.org/html/draft-ietf-ace-coap-est-18>

Freed, N. and N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

Freed, N., Klensin, J., and T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Hartke, K. "Observing Resources in the Constrained Application Protocol
(CoAP)" RFC 7641 DOI 10.17487/RFC7641 <https://www.rfc-
editor.org/info/rfc7641>

Birkholz, H., Vigano, C., and C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Acknowledgements
Most of the text in this document is from earlier contributions by two of the authors,

 and . This earlier work was reorganized in this document based on the
requirements in and discussions with , , and

.

Thomas
Fossati Klaus Hartke

[EST-COAPS] Michael Richardson Panos Kampanis
Peter van der Stok

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 8

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-ace-coap-est-18
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8610

Authors' Addresses
Thomas Fossati
ARM

 thomas.fossati@arm.com Email:

Klaus Hartke
Ericsson
Torshamnsgatan 23

 16483 Stockholm
Sweden

 klaus.hartke@ericsson.com Email:

Carsten Bormann
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 +49-421-218-63921 Phone:
 cabo@tzi.org Email:

RFC 8710 Multipart Content-Format for CoAP February 2020

Fossati, et al. Standards Track Page 9

mailto:thomas.fossati@arm.com
mailto:klaus.hartke@ericsson.com
tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 8710
	Multipart Content-Format for the Constrained Application Protocol (CoAP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Multipart Content-Format Encoding
	3. Usage Example: Observing Resources
	4. Implementation Hints
	5. IANA Considerations
	5.1. Registration of Media Type application/multipart-core
	5.2. Registration of a Content-Format Identifier for application/multipart-core

	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Authors' Addresses

