
RFC 8708
Use of the HSS/LMS Hash-Based Signature Algorithm
in the Cryptographic Message Syntax (CMS)

Abstract
This document specifies the conventions for using the Hierarchical Signature System (HSS) /
Leighton-Micali Signature (LMS) hash-based signature algorithm with the Cryptographic Message
Syntax (CMS). In addition, the algorithm identifier and public key syntax are provided. The HSS/
LMS algorithm is one form of hash-based digital signature; it is described in RFC 8554.

Stream: Internet Engineering Task Force (IETF)
RFC: 8708
Category: Standards Track
Published: January 2020
ISSN: 2070-1721
Author: R. Housley

Vigil Security

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8708

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Housley Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8708
https://www.rfc-editor.org/info/rfc8708
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. ASN.1

1.2. Terminology

1.3. Motivation

2. HSS/LMS Hash-Based Signature Algorithm Overview

2.1. Hierarchical Signature System (HSS)

2.2. Leighton-Micali Signature (LMS)

2.3. Leighton-Micali One-Time Signature (LM-OTS) Algorithm

3. Algorithm Identifiers and Parameters

4. HSS/LMS Public Key Identifier

5. Signed-Data Conventions

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. ASN.1 Module

Acknowledgements

Author's Address

1. Introduction
This document specifies the conventions for using the Hierarchical Signature System (HSS) /
Leighton-Micali Signature (LMS) hash-based signature algorithm with the Cryptographic Message
Syntax (CMS) signed-data content type. The LMS system provides a one-time digital
signature that is a variant of Merkle Tree Signatures (MTS). The HSS is built on top of the LMS
system to efficiently scale for a larger numbers of signatures. The HSS/LMS algorithm is one form
of hash-based digital signature, and it is described in . The HSS/LMS signature

[CMS]

[HASHSIG]

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 2

algorithm can only be used for a fixed number of signing operations with a given private key,
and the number of signing operations depends upon the size of the tree. The HSS/LMS signature
algorithm uses small public keys, and it has low computational cost; however, the signatures are
quite large. The HSS/LMS private key can be very small when the signer is willing to perform
additional computation at signing time; alternatively, the private key can consume additional
memory and provide a faster signing time. The HSS/LMS signatures are currently
defined to exclusively use SHA-256 .

[HASHSIG]
[SHS]

1.1. ASN.1
CMS values are generated using ASN.1 , using the Basic Encoding Rules (BER) and the
Distinguished Encoding Rules (DER) .

[ASN1-B]
[ASN1-E]

1.2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.3. Motivation
Recent advances in cryptanalysis and progress in the development of quantum
computers pose a threat to widely deployed digital signature algorithms. As a result,
there is a need to prepare for a day when cryptosystems such as RSA and DSA that depend on
discrete logarithms and factoring cannot be depended upon.

If large-scale quantum computers are ever built, these computers will be able to break many of
the public key cryptosystems currently in use. A post-quantum cryptosystem is a system
that is secure against quantum computers that have more than a trivial number of quantum bits
(qubits). It is open to conjecture when it will be feasible to build such computers; however, RSA,
DSA, Elliptic Curve Digital Signature Algorithm (ECDSA), and Edwards-curve Digital Signature
Algorithm (EdDSA) are all vulnerable if large-scale quantum computers are ever developed.

Since the HSS/LMS signature algorithm does not depend on the difficulty of discrete logarithms
or factoring, the HSS/LMS signature algorithm is considered to be post-quantum secure. One use
of post-quantum-secure signatures is the protection of software updates, perhaps using the
format described in , to enable deployment of software that implements new
cryptosystems.

[BH2013]
[NAS2019]

[PQC]

[FWPROT]

2. HSS/LMS Hash-Based Signature Algorithm Overview
Merkle Tree Signatures (MTS) are a method for signing a large but fixed number of messages. An
MTS system depends on a one-time signature method and a collision-resistant hash function.

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 3

This specification makes use of the hash-based algorithm specified in , which is the
Leighton and Micali adaptation of the original Lamport-Diffie-Winternitz-Merkle one-time
signature system .

As implied by the name, the hash-based signature algorithm depends on a collision-resistant
hash function. The hash-based signature algorithm specified in uses only the SHA-256
one-way hash function , but it establishes an IANA registry to permit the
registration of additional one-way hash functions in the future.

[HASHSIG]
[LM]

[M1979] [M1987] [M1989a] [M1989b]

[HASHSIG]
[SHS] [IANA-LMS]

2.1. Hierarchical Signature System (HSS)
The MTS system specified in uses a hierarchy of trees. The N-time Hierarchical
Signature System (HSS) allows subordinate trees to be generated when needed by the signer.
Otherwise, generation of the entire tree might take weeks or longer.

An HSS signature as specified in carries the number of signed public keys (Nspk),
followed by that number of signed public keys, followed by the LMS signature as described in
Section 2.2. The public key for the topmost LMS tree is the public key of the HSS system. The LMS
private key in the parent tree signs the LMS public key in the child tree, and the LMS private key
in the bottom-most tree signs the actual message. The signature over the public key and the
signature over the actual message are LMS signatures as described in Section 2.2.

The elements of the HSS signature value for a standalone tree (a top tree with no children) can be
summarized as:

where, u32str() and || are used as defined in .

The elements of the HSS signature value for a tree with Nspk signed public keys can be
summarized as:

where, as defined in , the signed_public_key structure contains the
lms_signature over the public key, followed by the public key itself. Note that Nspk is the number
of levels in the hierarchy of trees minus 1.

[HASHSIG]

[HASHSIG]

 u32str(0) ||
 lms_signature /* signature of message */

[HASHSIG]

 u32str(Nspk) ||
 signed_public_key[0] ||
 signed_public_key[1] ||
 ...
 signed_public_key[Nspk-2] ||
 signed_public_key[Nspk-1] ||
 lms_signature /* signature of message */

Section 3.3 of [HASHSIG]

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8554#section-3.3

2.2. Leighton-Micali Signature (LMS)
Each tree in the system specified in uses the Leighton-Micali Signature (LMS) system.
LMS systems have two parameters. The first parameter is the height of the tree, h, which is the
number of levels in the tree minus one. The specification supports five values for this
parameter: h=5, h=10, h=15, h=20, and h=25. Note that there are 2^h leaves in the tree. The
second parameter, m, is the number of bytes output by the hash function, and it is the amount of
data associated with each node in the tree. The specification supports only the
SHA-256 hash function , with m=32. As a result, the specification supports five
tree sizes; they are identified as:

LMS_SHA256_M32_H5
LMS_SHA256_M32_H10
LMS_SHA256_M32_H15
LMS_SHA256_M32_H20
LMS_SHA256_M32_H25

The specification establishes an IANA registry to permit the registration
of additional hash functions and additional tree sizes in the future.

As specified in , the LMS public key consists of four elements: the lms_algorithm_type
from the list above, the otstype to identify the Leighton-Micali One-Time Signature (LM-OTS) type
as discussed in Section 2.3, the private key identifier (I) as described in ,
and the m-byte string associated with the root node of the tree (T[1]).

The LMS public key can be summarized as:

As specified in , an LMS signature consists of four elements: the number of the leaf (q)
associated with the LM-OTS signature value, an LM-OTS signature value as described in Section
2.3, a typecode indicating the particular LMS algorithm, and an array of values that is associated
with the path through the tree from the leaf associated with the LM-OTS signature value to the
root. The array of values contains the siblings of the nodes on the path from the leaf to the root
but does not contain the nodes on the path itself. The array for a tree with height h will have h
values. The first value is the sibling of the leaf, the next value is the sibling of the parent of the
leaf, and so on up the path to the root.

The four elements of the LMS signature value can be summarized as:

[HASHSIG]

[HASHSIG]

[HASHSIG]
[SHS] [HASHSIG]

•
•
•
•
•

[HASHSIG] [IANA-LMS]

[HASHSIG]

Section 5.3 of [HASHSIG]

 u32str(lms_algorithm_type) || u32str(otstype) || I || T[1]

[HASHSIG]

 u32str(q) ||
 ots_signature ||
 u32str(type) ||
 path[0] || path[1] || ... || path[h-1]

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8554#section-5.3

n:

H:

w:

p:

ls:

2.3. Leighton-Micali One-Time Signature (LM-OTS) Algorithm
Merkle Tree Signatures (MTS) depend on a one-time signature method, and specifies
the use of the LM-OTS, which has five parameters:

The length in bytes of the hash function output. supports only SHA-256 ,
with n=32.

A preimage-resistant hash function that accepts byte strings of any length and returns an n-
byte string.

The width in bits of the Winternitz coefficients. supports four values for this
parameter: w=1, w=2, w=4, and w=8.

The number of n-byte string elements that make up the LM-OTS signature value.

The number of bits that are left-shifted in the final step of the checksum function, which is
defined in .

The values of p and ls are dependent on the choices of the parameters n and w, as described in
.

The specification supports four LM-OTS variants:

LMOTS_SHA256_N32_W1
LMOTS_SHA256_N32_W2
LMOTS_SHA256_N32_W4
LMOTS_SHA256_N32_W8

The specification establishes an IANA registry to permit the registration
of additional variants in the future.

Signing involves the generation of C, an n-byte random value.

The LM-OTS signature value can be summarized as the identifier of the LM-OTS variant, the
random value, and a sequence of hash values (y[0] through y[p-1]) that correspond to the
elements of the public key, as described in :

[HASHSIG]

[HASHSIG] [SHS]

[HASHSIG]

Section 4.4 of [HASHSIG]

Appendix B of [HASHSIG]

[HASHSIG]

•
•
•
•

[HASHSIG] [IANA-LMS]

Section 4.5 of [HASHSIG]

 u32str(otstype) || C || y[0] || ... || y[p-1]

3. Algorithm Identifiers and Parameters
The algorithm identifier for an HSS/LMS hash-based signature is:

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8554#section-4.4
https://www.rfc-editor.org/rfc/rfc8554#appendix-B
https://www.rfc-editor.org/rfc/rfc8554#section-4.5

When this object identifier is used for an HSS/LMS signature, the AlgorithmIdentifier parameters
field be absent (that is, the parameters are not present, and the parameters are not set to
NULL).

The signature value is a large OCTET STRING, as described in Section 2 of this document. The
signature format is designed for easy parsing. The HSS, LMS, and LM-OTS components of the
signature value each include a counter and a typecode that indirectly provide all of the
information that is needed to parse the value during signature validation.

The signature value identifies the hash function used in the HSS/LMS tree. uses only
the SHA-256 hash function , but it establishes an IANA registry to permit the
registration of additional hash functions in the future.

 id-alg-hss-lms-hashsig OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) alg(3) 17 }

MUST

[HASHSIG]
[SHS] [IANA-LMS]

4. HSS/LMS Public Key Identifier
The AlgorithmIdentifier for an HSS/LMS public key uses the id-alg-hss-lms-hashsig object
identifier, and the parameters field be absent.

When this AlgorithmIdentifier appears in the SubjectPublicKeyInfo field of an X.509 certificate
, the certificate key usage extension contain digitalSignature, nonRepudiation,

keyCertSign, and cRLSign; however, it contain other values.

Note that the id-alg-hss-lms-hashsig algorithm identifier is also referred to as id-alg-mts-hashsig.
This synonym is based on the terminology used in an early draft version of the document that
became .

The public key value is an OCTET STRING. Like the signature format, it is designed for easy
parsing. The value is the number of levels in the public key, L, followed by the LMS public key.

The HSS/LMS public key value can be described as:

MUST

[RFC5280] MAY
MUST NOT

 pk-HSS-LMS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-hss-lms-hashsig
 KEY HSS-LMS-HashSig-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

 HSS-LMS-HashSig-PublicKey ::= OCTET STRING

[HASHSIG]

 u32str(L) || lms_public_key

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 7

Note that the public key for the topmost LMS tree is the public key of the HSS system. When L=1,
the HSS system is a single tree.

5. Signed-Data Conventions
As specified in , the digital signature is produced from the message digest and the signer's
private key. The signature is computed over different values depending on whether signed
attributes are absent or present.

When signed attributes are absent, the HSS/LMS signature is computed over the content. When
signed attributes are present, a hash is computed over the content using the same hash function
that is used in the HSS/LMS tree, then a message-digest attribute is constructed with the hash of
the content, and then the HSS/LMS signature is computed over the DER-encoded set of signed
attributes (which include a content-type attribute and a message-digest attribute). In
summary:

When using , the fields in the SignerInfo are used as follows:

digestAlgorithm contain the one-way hash function used in the HSS/LMS tree. In
, SHA-256 is the only supported hash function, but other hash functions might be

registered in the future. For convenience, the AlgorithmIdentifier for SHA-256 from
 is repeated here:

signatureAlgorithm contain id-alg-hss-lms-hashsig, and the algorithm parameters field
 be absent.

signature contains the single HSS signature value resulting from the signing operation as
specified in .

[CMS]

MUST

 IF (signed attributes are absent)
 THEN HSS_LMS_Sign(content)
 ELSE message-digest attribute = Hash(content);
 HSS_LMS_Sign(DER(SignedAttributes))

[HASHSIG]

• MUST
[HASHSIG]

[PKIXASN1]

 mda-sha256 DIGEST-ALGORITHM ::= {
 IDENTIFIER id-sha256
 PARAMS TYPE NULL ARE preferredAbsent }

 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistAlgorithms(4) hashalgs(2) 1 }

• MUST
MUST

•
[HASHSIG]

6. Security Considerations
Implementations protect the private keys. Compromise of the private keys may result in
the ability to forge signatures. Along with the private key, the implementation keep track of
which leaf nodes in the tree have been used. Loss of integrity of this tracking data can cause a

MUST
MUST

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 8

[ASN1-B]

8. References

8.1. Normative References

,
, , August 2015.

one-time key to be used more than once. As a result, when a private key and the tracking data
are stored on non-volatile media or in a virtual machine environment, failed writes, virtual
machine snapshotting or cloning, and other operational concerns must be considered to ensure
confidentiality and integrity.

When generating an LMS key pair, an implementation generate each key pair
independently of all other key pairs in the HSS tree.

An implementation ensure that an LM-OTS private key is used to generate a signature only
one time and ensure that it cannot be used for any other purpose.

The generation of private keys relies on random numbers. The use of inadequate pseudorandom
number generators (PRNGs) to generate these values can result in little or no security. An
attacker may find it much easier to reproduce the PRNG environment that produced the keys,
searching the resulting small set of possibilities, rather than brute-force searching the whole key
space. The generation of quality random numbers is difficult, and offers important
guidance in this area.

The generation of hash-based signatures also depends on random numbers. While the
consequences of an inadequate pseudorandom number generator (PRNG) to generate these
values is much less severe than in the generation of private keys, the guidance in
remains important.

When computing signatures, the same hash function be used to compute the message
digest of the content and the signed attributes, if they are present.

MUST

MUST

[RFC4086]

[RFC4086]

SHOULD

7. IANA Considerations
In the "SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)" registry, IANA has
updated the reference for value 64 to point to this document.

In the "SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)" registry, IANA has updated
the description for value 17 to "id-alg-hss-lms-hashsig" and updated the reference to point to this
document.

IANA has also added the following note to the "SMI Security for S/ MIME Algorithms
(1.2.840.113549.1.9.16.3)" registry:

Value 17, "id-alg-hss-lms-hashsig", is also referred to as "id-alg-mts-hashsig".

ITU-T "Information technology -- Abstract Syntax Notation One (ASN.1):
Specification of basic notation" ITU-T Recommendation X.680

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 9

[ASN1-E]

[CMS]

[HASHSIG]

[RFC2119]

[RFC5280]

[RFC8174]

[SHS]

[BH2013]

[CMSASN1]

[CMSASN1U]

[FWPROT]

[IANA-LMS]

[LM]

,

, , August 2015.

, , , ,
, September 2009, .

, ,
, , April 2019,
.

, , ,
, , March 1997,
.

,

, , , May 2008,
.

, ,
, , , May 2017,

.

,
, , October 2008.

8.2. Informative References

,
, August 2013,

.

,
, , , June 2010,

.

,
,

, , July 2011,
.

,
, , , August 2005,

.

, , ,
.

ITU-T "Information technology -- ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

McGrew, D., Curcio, M., and S. Fluhrer "Leighton-Micali Hash-Based Signatures"
RFC 8554 DOI 10.17487/RFC8554 <https://www.rfc-editor.org/info/
rfc8554>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

National Institute of Standards and Technology (NIST) "Secure Hash Standard
(SHS)" FIPS PUB 180-3

Ptacek, T., Ritter, T., Samuel, J., and A. Stamos "The Factoring Dead: Preparing
for the Cryptopocalypse" <https://media.blackhat.com/us-13/us-13-
Stamos-The-Factoring-Dead.pdf>

Hoffman, P. and J. Schaad "New ASN.1 Modules for Cryptographic Message
Syntax (CMS) and S/MIME" RFC 5911 DOI 10.17487/RFC5911 <https://
www.rfc-editor.org/info/rfc5911>

Schaad, J. and S. Turner "Additional New ASN.1 Modules for the Cryptographic
Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)"
RFC 6268 DOI 10.17487/RFC6268 <https://www.rfc-editor.org/info/
rfc6268>

Housley, R. "Using Cryptographic Message Syntax (CMS) to Protect Firmware
Packages" RFC 4108 DOI 10.17487/RFC4108 <https://www.rfc-
editor.org/info/rfc4108>

IANA "Leighton-Micali Signatures (LMS)" <https://www.iana.org/assignments/
leighton-micali-signatures/>

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 10

https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8554
https://www.rfc-editor.org/info/rfc8554
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://media.blackhat.com/us-13/us-13-Stamos-The-Factoring-Dead.pdf
https://media.blackhat.com/us-13/us-13-Stamos-The-Factoring-Dead.pdf
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc4108
https://www.rfc-editor.org/info/rfc4108
https://www.iana.org/assignments/leighton-micali-signatures/
https://www.iana.org/assignments/leighton-micali-signatures/

[M1979]

[M1987]

[M1989a]

[M1989b]

[NAS2019]

[PKIXASN1]

[PQC]

[RFC4086]

,
, , July 1995.

, ,
, , 1979.

, ,
,

, , 1988,
.

, ,
, ,

, 1990, .

, ,
, ,

, 1990, .

,
, ,

, 2019, .

,
, , , June 2010,

.

, ,
, 2009,

.

,
, , , , June 2005,

.

Leighton, T. and S. Micali "Large provably fast and secure digital signature
schemes based on secure hash functions" U.S. Patent 5,432,852

Merkle, R. "Secrecy, Authentication, and Public Key Systems" Technical Report
No. 1979-1 Information Systems Laboratory, Stanford University

Merkle, R. "A Digital Signature Based on a Conventional Encryption Function"
Advances in Cryptology -- CRYPTO '87 Proceedings Lecture Notes in Computer
Science Vol. 293 DOI 10.1007/3-540-48184-2_32 <https://
doi.org/10.1007/3-540-48184-2_32>

Merkle, R. "A Certified Digital Signature" Advances in Cryptology -- CRYPTO '89
Proceedings Lecture Notes in Computer Science Vol. 435 DOI
10.1007/0-387-34805-0_21 <https://doi.org/10.1007/0-387-34805-0_21>

Merkle, R. "One Way Hash Functions and DES" Advances in Cryptology --
CRYPTO '89 Proceedings Lecture Notes in Computer Science Vol. 435 DOI
10.1007/0-387-34805-0_40 <https://doi.org/10.1007/0-387-34805-0_40>

National Academies of Sciences, Engineering, and Medicine "Quantum
Computing: Progress and Prospects" The National Academies Press DOI
10.17226/25196 <https://doi.org/10.17226/25196>

Hoffman, P. and J. Schaad "New ASN.1 Modules for the Public Key
Infrastructure Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912
<https://www.rfc-editor.org/info/rfc5912>

Bernstein, D. "Introduction to post-quantum cryptography" DOI
10.1007/978-3-540-88702-7_1 <http://www.springer.com/cda/content/
document/cda_downloaddocument/9783540887010-c1.pdf>

Eastlake 3rd, D., Schiller, J., and S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 11

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.17226/25196
https://www.rfc-editor.org/info/rfc5912
http://www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086

Appendix A. ASN.1 Module

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 12

<CODE STARTS>

MTS-HashSig-2013
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) id-mod(0) id-mod-mts-hashsig-2013(64) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS
 PUBLIC-KEY, SIGNATURE-ALGORITHM, SMIME-CAPS
 FROM AlgorithmInformation-2009 -- RFC 5911 [CMSASN1]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) } ;

--
-- Object Identifiers
--

id-alg-hss-lms-hashsig OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) alg(3) 17 }

id-alg-mts-hashsig OBJECT IDENTIFIER ::= id-alg-hss-lms-hashsig

--
-- Signature Algorithm and Public Key
--

sa-HSS-LMS-HashSig SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-alg-hss-lms-hashsig
 PARAMS ARE absent
 PUBLIC-KEYS { pk-HSS-LMS-HashSig }
 SMIME-CAPS { IDENTIFIED BY id-alg-hss-lms-hashsig } }

pk-HSS-LMS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-hss-lms-hashsig
 KEY HSS-LMS-HashSig-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

HSS-LMS-HashSig-PublicKey ::= OCTET STRING

--
-- Expand the signature algorithm set used by CMS [CMSASN1U]
--

SignatureAlgorithmSet SIGNATURE-ALGORITHM ::=
 { sa-HSS-LMS-HashSig, ... }

--
-- Expand the S/MIME capabilities set used by CMS [CMSASN1]
--

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 13

SMimeCaps SMIME-CAPS ::=
 { sa-HSS-LMS-HashSig.&smimeCaps, ... }

END

<CODE ENDS>

Acknowledgements
Many thanks to , , , , ,

, , , , , , and
 for their careful review and comments.

Joe Clarke Roman Danyliw Scott Fluhrer Jonathan Hammell Ben Kaduk Panos
Kampanakis Barry Leiba John Mattsson Jim Schaad Sean Turner Daniel Van Geest Dale
Worley

Author's Address
Russ Housley
Vigil Security, LLC
516 Dranesville Road

, Herndon VA 20170
United States of America

 housley@vigilsec.com Email:

RFC 8708 Use of the HSS/LMS Hash-Based Signature January 2020

Housley Standards Track Page 14

mailto:housley@vigilsec.com

	RFC 8708
	Use of the HSS/LMS Hash-Based Signature Algorithm in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. ASN.1
	1.2. Terminology
	1.3. Motivation

	2. HSS/LMS Hash-Based Signature Algorithm Overview
	2.1. Hierarchical Signature System (HSS)
	2.2. Leighton-Micali Signature (LMS)
	2.3. Leighton-Micali One-Time Signature (LM-OTS) Algorithm

	3. Algorithm Identifiers and Parameters
	4. HSS/LMS Public Key Identifier
	5. Signed-Data Conventions
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. ASN.1 Module
	Acknowledgements
	Author's Address

